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Abstract: Computerized Adaptive Testing (CAT) is a beneficial test technique that 

decreases the number of items that need to be administered by taking items in 

accordance with individuals' own ability levels. After the CAT applications were 

constructed based on the unidimensional Item Response Theory (IRT), 

Multidimensional CAT (MCAT) applications have gained momentum with the 

improvement of multidimensional IRT (MIRT) models in recent years. Researchers 

often benefit from simulation studies in order to design the final adaptive testing 

application and to test the effectiveness of adaptive testing applications they 

developed with different methods. Recently, R has become one of the most widely 

used programming languages in Monte Carlo Simulation studies since it is a free 

and open-source software. The aims of this study are to present the MCAT 

simulation process step by step in the R environment, to examine the effects of the 

conditions that researchers can handle during the simulation process according to 

two different dimensional models, and to examine the effect of treating 

multidimensional structures as unidimensional structures on simulation results. In 

this direction, datasets generated in accordance with within-item dimensionality 

and between-item dimensionality models, MCAT simulation studies were 

constructed with different customizations, and MCAT simulation results were 

compared with unidimensional CAT simulation results. All commands required for 

each simulation example were explained and results were shared for each 

condition. 

1. INTRODUCTION 

The integration of computers and the internet into education has gained tremendous momentum 

through the development of information technology. Although most of the exams are still applied 

as a paper-and-pencil method starting from the primary education level, internet-based distance 

education and test applications are rapidly increasing. In paper-and-pencil exam applications, the 

items that each examinee is expected to answer, the number of items are the same. The connection 

between abilities of an individual and the properties of the items are not taken into consideration. 

In other words, item difficulty cannot be matched with the examinee's ability. However, in CAT 

applications, the individual encounters the properties of items determined according to his/her abil-

ity level during the application process. In this way, test applications can be conducted with fewer 

items tailored to the individual, shorter time, and higher reliability. Moreover, test results and feed-

back can be presented to the individual as soon as the test ends (Weiner, 1993, Segall, 2005; Weiss 
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& Gibbons, 2007, Lin 2012). In addition, cheating during the testing time in cognitive tests is sig-

nificantly reduced in online exams with CAT applications by using different questions to individu-

als. In addition to its advantages for individuals, CAT has also enabled researchers to form their 

own tests with different methods. Researchers can perform a wide variety of applications by differ-

entiating the IRT model, starting the test, choosing the item to be administered, estimating the abil-

ity parameter, and changing the test stopping rules. For instance, when designing a test in order to 

decide which IRT model is suitable, simulation applications can be used to decide how many items 

will be included in the test and what the item exposure rate will be. Simulation applications allow 

the comparison of CAT applications constructed under different methods and constraints (Thomp-

son & Wise, 2011; Meneghetti & Junior, 2018). Researchers can run CAT simulations based on 

various datasets: Monte Carlo simulations by generating data, post-hoc simulations on the basis of 

parameters derived from real-time applications, or hybrid simulation by imputing missing values to 

the real-time applications (Nydick & Weiss, 2009).  

IRT models are frequently used in Monte Carlo Simulation studies in the field of psychometrics 

(Bulut & Sünbül, 2017). Most of the CAT studies performed in the literature are based on unidi-

mensional IRT. Nevertheless, many psychological structures are multidimensional. Through 

MCAT applications developed using multidimensional IRT (MIRT) models in multidimensional 

structures, it is possible to decrease the number of items required to be administered to an individual 

to increase the precision of measurement and measure multiple traits at the same time (Seo & Weiss, 

2015; Chalmers, 2016). In order to take these advantages of MCATs, there is a variety of software 

developed. One of the most popular software is R, which is a free and open-source platform. Real-

time or simulation applications of MCATs, which researchers can customize by writing their own 

functions, can be performed on R (R Core Team, 2020). R allows researchers to customize their 

own applications by writing their own functions. The mirtCAT package (Chalmers, 2016) in R, 

which allows researchers to develop customized MCAT applications by writing their own code, 

consists of utile tools performing Monte Carlo simulations, and it is the only package that allows 

MCAT applications for now. 

1.1. Computerized Adaptive Testing 

Adaptive testing is an advanced test application where examinees encounter items according to 

their abilities, which is estimated based on the response pattern. Each individual completes a 

tailored test by preventing them from taking easy and difficult questions for them. Therefore, 

examinees encounter fewer items and save time (Embretson & Reise; 2000; Van der Linden, 

2002).  

In adaptive testing applications, the process starts with temporary θ estimation for an examinee. 

Frequently, the starting θ is considered to be 0. By presenting the first item in accordance with 

the starting rule to the examinee, the estimation is performed again, and the items are presented 

according to the item selection rule. This process continues until the stopping criterion is met. 

If the test does not consist of subscales, the application is stopped when the stopping criterion 

is met. If it consists of subscales, the other test starts, and the same procedures are repeated. 

The flowchart (Thissen & Mislevy, 2000), which represents the application process of adaptive 

testing, is presented in Figure 1.  
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Figure 1. A flowchart showing the adaptive testing process* 

 
 

*: From Thissen, D. and Mislevy, R. J., 2000. Testing Algorithms. In H. Wainer (Eds.). Computerized Adaptive 

Testing: A Primer (p.106). Lawrence Erlbaum Assc. Copyright 2000 by Lawrence Erlbaum Associates, Publish-

ers.” 
 

Adaptive tests can be developed as a unidimensional CAT and MCAT according to the dimen-

sion of the measured construct. Six components are required to carry out an MCAT application 

(Weiss & Kingsbury, 1984; Thompson & Weiss, 2011; Chalmers, 2016):  

1. Multidimensional Item Response Theory (MIRT) model, 

2. Calibrated item pool,  

3. Starting rule, 

4. Item selection method, 

5. Estimation method, 

6. Stopping rule. 

These components are briefly explained below: 

MIRT model: The interaction between examinees and test items may not always be unidimen-

sional because, while answering the test item, the individual may need to use more than one 

ability or skill field, so MIRT models may be required in complex structures (Bock & Aitkin, 

1981, Reckase, 2009, Chen, 2012). MIRT models are divided into two according to item level: 

within-item dimensionality and between-item dimensionality models. In the within-item di-

mensionality model, items load to all dimensions, and in the between-item dimensionality 

model, each item loads to a specific dimension as shown in Figure 2 (Wang & Chen, 2004).  

One of the crucial steps in implementing adaptive testing applications is determining the model 

to be used in item bank calibration, ability estimation, and item selection methods (Magis et al., 

2017). The methods to be used vary in accordance with the dimensionality of the model and 

whether the items have dichotomous or polytomous scored response categories (Weiss & 

Kingsbury, 1984, Ackerman, 1991; Wang & Chen, 2004, De Ayala, 2009). Therefore, it should 

be decided on the MIRT model to be used before MCATs are formed.  
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Figure 2. Between and Within Item Multi-Dimensionality (Wang & Chen, 2004).  

   

 

 

Calibrated item pool: An item pool consisting of many quality items to be used during MCAT 

application should be created. There should be a sufficient number of items in the item pool 

suitable for individuals with different levels of the measured attribute. According to Stocking 

(1994), the item pool should have at least six times as many items as the test length. And, 

Reckase (2003) stated that a pool of approximately 200 items is appropriate for examinees 

sampled from a standard normal distribution. For CAT applications to work efficiently, it is 

essential to have sufficient quantity and quality of items. On the other hand, a high number of 

items will not be sufficient by itself. Many researchers have stated that the distribution of item 

parameters, content weighting, and item exposure rates should also be taken into consideration 

while developing the pool (He & Reckase, 2013).  

Starting Rule: At this stage of MCAT application, it is usually required to define the initial 

estimation of the latent trait and the hyper-parameter distributions. Hyper-parameters are pa-

rameters obtained from the preliminary distribution without the real dataset observed. Suppose 

the first item administered to the examinee during the application is not determined specifically. 

In that case, the latent trait's initial estimation is used to determine the first item to be selected. 

Hyper-parameter distributions are used as a component in the item selection method and they 

provide prior distribution information while updating the latent trait estimation after the indi-

vidual responds to each item during the MCAT application. MCATs can also be started with 

the methods of starting from the first item, starting according to the item selection method, and 

assigning the average ability level of the population as the initial theta. When the initial value 

of the examinees' latent trait estimates is unknown, it is common to assume it 0 (Thompson, 

2007; Riggelsen, 2008; Chalmers, 2016). 

Item selection method: During the MCAT application, after the examinee encounters the first 

item and estimates the ability parameters, the item selection method should be determined for 

determining which item will be presented next. Item selection methods are usually based on the 

idea of maximizing information about an examinee's location on the θ-coordinate or minimizing 

the error in the location estimation The basis of all item selection methods is maximizing or 

minimizing some criterion values in the final θ estimation. What makes these methods different 

from each other is the definition of the criterion (Reckase, 2009). While there are many item 

selection methods for CAT applications in the literature, there is a limited number of item se-

lection methods available for MCAT applications. Some of these criteria are as follows: A-rule, 

Between Item Multi-Dimensionality       Within Item Multi-Dimensionality 

θ 

θ 

θ 

θ 
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E-rule, D-rule, T-rule, W-rule, Kullback-Leibler Information Criteria (KL), and Continuous 

Entropy method. While the basis of A-rule method is minimizing trace of the asymptotic co-

variance matrix, the basis of E-rule is minimizing the information matrix and Wrule method 

based on maximizing the weighted information criteria. D-rule method is based on maximizing 

the determinant of the information matrix and T-rule based on maximizing the trace of the 

asymptotic covariance matrix. And other methods KL and Continious Entropy method, 

maximize posterior expected KL information and minimize the expected continuous entropy, 

respectively.  And other methods KL and CL are based on maximizing the posterior expected 

KL information and minimizing the expected continuous entropy, respectively. (Veerkamp & 

Berger, 1997; Segall, 2001; Wang & Chang, 2004; Mulder & van der Linden, 2009; Wang & 

Chang 2011). 

Estimation method: The estimation method for calculating the examinees' latent trait parame-

ters should be selected. The Maximum Likelihood Method (MLE) (Lord and Novick, 1968), 

EAP and MAP (Segall, 1996) are the most frequently used methods. However, if all the answers 

are correct or incorrect, EAP and MAP methods are suggested to make estimations with low 

standard errors (Hambleton and Swaminathon, 1985). In addition to these methods, the 

weighted MLE (MWLE) method was revealed by Wang (2015) for multidimensional tests, 

which provides robust estimations  

Stopping rule: At this stage of the CAT application, the stopping rule of testing should be 

determined. In CAT applications, stopping rules may be used in accordance with the fixed test 

length, standard error, change in the amount of the latent trait estimation, or the fixed applica-

tion time. When the stopping rule is determined according to the fixed test length, erroneous 

results can be obtained in CAT applications for the examinees who are at the end of the skill 

distribution (Finkelman et al., 2009). For this reason, researchers can stop the CATs when a 

standard error level they previously specified is reached, and they obtain measurements that are 

more precisely. When specifying the standard error, if the test used is multidimensional, each 

dimension can be terminated with the same or different standard error values (Chalmers, 2016). 

If the standard error value is not determined for each dimension by customizing the codes to be 

used, the application stops in accordance with the standard error value specified for the first 

dimension and estimates according to the different standard error values for the other dimen-

sions. Therefore, if the standard error-based stopping rule will be used in MCAT applications, 

it is essential to add the standard error value for each dimension to the code to be run. 

1.2. Monte Carlo Simulations 

Monte Carlo simulations have a crucial role in studies in the field of psychometrics. Within the 

scope of their studies, researchers may not be able to access empirical data or may not prefer to 

test applications for data collection purposes. One reason for the simulation requirement is that 

collecting empirical data can be time-consuming and costly when the number of items used in 

studies is long, and the number of examinees to be applied is high. In some studies, there are 

losses in the empirical data collected, and this loss of data affects the results of the analysis. 

Another, probably the most important, reason is that the working conditions to be examined 

cannot be obtained with real-time applications (Davey et al., 1997; Feinberg and Rubright, 

2016). But this approach also has several limitations. Firstly, how realistic the conditions mod-

eled in Monte Carlo simulation studies are affects the usefulness of the results. In this respect, 

the modeled conditions (e.g., assumed distribution of the parameters) should be defensible in 

terms of reality. Another limitation is that it is difficult to assess the quality of the random 

number generator in Monte Carlo simulations (Stone, 1993). Post-hoc and hybrid simulations 

can be done as a solution to the concern that the results obtained from Monte Carlo simulations 

cannot be generalized to real test applications. In post-hoc simulations, real item-response vec-

tors obtained from paper-and-pencil test or adaptive test are used instead of generated item 
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responses. In hybrid simulations, simulations are performed after missing value imputation 

based on empiricalreal data set (Thompson & Weiss, 2011). However, it is not easy to obtain 

real answers due to time and cost.  Monte Carlo studies allow modeling realistic data conditions 

and can be used in competitor statistical comparisons that cannot be made with empirical data 

(Harvell et al., 1996). When there are a large number of conditions to manipulate, Monte Carlo 

simulations are preferred. Because, Monte Carlo simulations provide researchers with the op-

portunity to test a large number of models in a short time, which are hard to test in real life. 

Monte Carlo simulation studies can be carried out by researchers in order to examine the ap-

plicability in CAT applications and to make an application plan. Post-hoc or hybrid simulation 

studies are preferred to determine the final application conditions (Thompson and Weiss, 2011). 

Monte Carlo and post-hoc simulations are frequently used in CAT applications performed in 

the literature. The two most crucial variables of Monte Carlo simulations are average test length 

and precision of the test scores. In traditional tests, the number of items in the test is constant, 

and the precision is variable. The number of items administered to examinees in adaptive tests 

is usually the variable, but it can be designed to provide equal precision to each examinee. In 

this regard, simulation studies are essential (Thompson & Weiss, 2011).  

1.3. R Statistical Programming Environment 

As a result of the development of computer technology, there are some commercial and open-

source softwares that can carry out CAT simulations. Some of these softwares are CATSim, 

SimulCAT, SimuMCAT, Firestar software, and R software environment. CATSim is presented 

as a commercial product, and other software is presented as open-source access (Aybek, 2016). 

While unidimensional CAT simulations are possible with CATSim, SimulCAT, and Firestar 

software, MCATs simulations are possible with the SimuMCAT and the mirtCAT package in 

the R software environment. 

The R programming language, which has been widely used in academic studies in recent years, 

is a programming language developed with the contributions of researchers from different parts 

of the world since 1997 (Hornik, 2020). The use of R has increased rapidly due to its open 

source code. R programming language offers the opportunity to be used in many fields such as 

statistics, data mining, machine learning and simulation applications. The R statistical program-

ming environment (R Core Team, 2020) enables the opportunity to conduct simulation studies 

free of charge. Researchers who ask for generating data in R may generate data in accordance 

with a different probability distribution (normal, log-normal, uniform, etc.). There is a root 

name setting out each distribution, and usually, four functions are defined for each. Each dis-

tribution's commands begin with a letter to indicate functionality:  

p: cumulative distribution function, 

q: quantile function, 

d: density function,  

r: randomly generated numbers.  

For instance, for log-normal distribution, rlnorm (the multivariate lognormal distribution), 

plnorm (the log normal cumulative distribution), dlnorm (the log normal probability density) 

and qlnorm (the log normal quantile) functions can be defined. Random data is generated for 

the rlnorm function according to the log-normal distribution. The qlnorm function sets the quan-

tile of the log-normal distribution at a given cumulative density. Normal, log-normal, and uni-

form distributions are frequently used in studies where data generation is performed based upon 

IRT.  

In this study, the steps of MCAT simulations according to within-item and between-item di-

mensionality models with the mirtCAT (version: 1.10) package in the RStudio (version: 

1.3.1073) software environment will be demonstrated in terms of ease of use and prevalence. 
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After all required components are prepared, the function that starts MCAT simulations with the 

mirtCAT package is the mirtCAT() function. It is essential to introduce the item and individual 

parameters, IRT model, inter-dimensional correlations, starting rule of the test, item selection 

criteria and stopping rule to perform a multidimensional simulation with this function. The 

functions that are basically required to perform MCAT simulation with mirtCAT package are 

described in Table1, below (Chalmers, 2016).  

Table 1. Some functions to perform MCAT simulation with mirtCAT package 

mo: It is used in the model definition phase. The model defined in the mirt package is drawn to 

mirtCAT with this function. This object is required if test items are to be scored.  

generate.mirt_object: It is the function used to form a mirt object from known population parameters 

and transfer it to mirtCAT. 

method: It is used to determine the parameter estimation method. "EAP", "MAP", "ML", "WLE", 

"EAPsum", "fixed" are the methods that can be selected.  

criteria: It is the function for determining the method of item selection. "seq", "random", "MI", 

"MEPV", "MLWI", "MPWI", "MEI", "IKL", "IKLP", "IKLn", "IKLPn", "Drule", "DPrule", "Erule", 

"EPrule", "Trule", "TPrule", "Arule", "APrule", "Wrule", "WPrule", "KL", "KLn". 

start_item: It is the function by which the starting rule of MCAT application will be determined.  

A MCAT design can be customized using different MIRT models, different item selection rules, 

different estimation methods etc. Since the methods to be used in a design will affect the meas-

urement result, it is important to determine the most effective methods according to the appli-

cation purpose. Besides these, interdimensional correlations and the dimensional structures are 

important issues for CATs (Su, 2016). Because interdimensional correlation can change the 

dimensionality of the structure and this in turn can change the MCAT implementation to be 

carried out. 

1.4. Purposes 

The purposes of this study are to present how MCAT designs can be generated and executed 

through Monte Carlo simulations in R environment; to show the effect of simulation conditions, 

which can be considered according to different dimensionality models, on the simulation re-

sults, and to investigate the effect of treating multidimensional structures as unidimensional 

structures. For the purposes, different Monte Carlo simulation studies were presented and the 

steps of simulations were demonstrated. 

1.5. Research Questions 

In line with the research purposes, answers to the following questions were sought: 

1. How is an MCAT simulation designed according to the within-item dimensionality model 

affected by different item selection methods, ability parameter estimation methods and in-

terdimensional correlations? 

2. How is an MCAT simulation designed according to the between-item dimensionality model 

affected by different item selection methods, ability parameter estimation methods and in-

terdimensional correlations? 

3. How does treating each dimension of the multidimensional structure as a single dimension 

affect the simulation results? 
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2. METHOD 

In this study, three different Monte Carlo simulation studies were carried out and all simulation 

steps were presented. In all three studies, data generation, Monte Carlo simulation steps and 

findings obtained as a result of analysis are presented. In order to answer the first research 

question, Simulation Study 1 is carried out. In this example, MCAT simulations were conducted 

according to the within-item dimensionality model with different conditions. Different condi-

tions that could affect the precision of MCATs were considered: (1) interdimensional correla-

tion, (2) item selection method, (3) parameter estimation method.  In order to answer the second 

question, MCAT simulations conducted according to the between-item dimensionality model 

are carried out and the same conditions in the first study were examined in Simulation Study 2. 

Lastly, in order to seek an answer to the third questions, Simulation Study 3 is carried out. In 

this study, Unidimensional CAT (UCAT) simulations were conducted using the item and ability 

parameters of the multidimensional structure. MCAT and UCAT simulations performed with 

the data produced according to the between-item dimensionality model were compared.In all 

studies, RMSE, bias and r(θi, 𝜃 ̂j)  values obtained from all simulations were examined. R was 

used in order to complete simulation steps. The presented steps are completed in R for Windows 

4.0.2. Simulation study examples of MCAT applications were performed on the mirtCAT 

(Chalmers, 2016) package. 

2.1. Simulation Study 1: The Within-item Dimensionality Model  

In the first simulation study, the within-item dimensionality model was handled. A simple non-

customized MCAT simulation example is presented. Item selection methods, ability parameter 

estimation methods and the interdimensional correlations were examined as changing simula-

tion conditions. In the first step of the MCAT simulation, packages to be used on the R platform 

should be downloaded.  

# Install required packages 

install.packages("mirt")  

install.packages("mirtCAT") 

install.packages("mvtnorm") 

install.packages("plyr") 

install.packages("SimDesign") 

After the downloading process is completed, the required packages should be activated. Before 

the analyses are carried out, the set.seed() command ensures that the outputs of the appli-

cation are reproducible. Any number can be written in parentheses, and the same results are 

obtained when set.seed() is run with the same number.   

# Load packages into the current session 

library(mirt) 

library(mirtCAT) 

library(mvtnorm) 

library(plyr) 

library(SimDesign) 

# Set the seed for reproducible results 

set.seed(1111) 

After the packages were drawn and activated, item and ability parameters were generated. In 

accordance with the within-item dimensionality model, 2-dimensional MCAT simulations were 

carried out for 1000 examinees. For this example, parameters for a multidimensional test con-

sisting of 300 dichotomous items and 2 dimensions were generated. The a parameters were 

drawn from the log normal distribution (a ~ lnN (.0, .3)), and item intercept parameters were 
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drawn from the uniform distribution (d~ U (-2, 2)). After slopes and intercepts were generated, 

they were combined in a single object (parameters) with the data.frame function.    

#Generate Multidimensional IRT parameters  

testlength <- 300 # Bank size 

N <- 1000 # Sample size 

a <- matrix(rlnorm(testlength*2,.0,.3),testlength) # Generate item 

discrimination parameters 

d <- runif(n = testlength, -2, 2) # Generate intercepts 

parameters <- data.frame(a, d) # Combine parameters in a single dataset 

colnames(parameters) <- c('a1', 'a2', 'd') # Name the columns 

In the next step, the variance-covariance matrix of the ability parameters for two-dimensional 

structure is demonstrated on a matrix. Ability parameters were drawn from the multivariate 

normal distribution ((θ~(0,𝚺 )) depending on the defined correlations. For the two-dimensional 

structure, the inter-dimensional correlation was determined as 0.3, 0.6 and 0.9, and parameters 

generated with rmvnorm() function.  

#Set intercorrelations between latent traits 

latent_cov <- matrix(c(1, r, r, 1), 2, 2) 

 

#Generate multidimensional theta parameters 

thetas <- rmvnorm(N, sigma = latent_cov) 

Then the mod object required for MCAT Simulation was formed. This object is used while 

generating the response pattern and creating the MCAT design. The generate_pattern 

() function was used to generate the response pattern.  

# Create mirt_object 

mod <- generate.mirt_object(parameters, itemtype = '2PL', latent_covariance 

= latent_cov)  

 

#Generate response data 

responsepattern <- generate_pattern(mo = mod, Theta = thetas) 

In the next step, required components were specified for the MCAT simulation to be conducted. 

These components were defined by the function design() and mirtCAT(). In these defi-

nitions, SE ≤0.4 was specified as stopping rule. Five item selection methods were examined for 

two dimensional complex model using two estimation methods. By using Arule, Drule, Trule, 

Wrule and KLn (Kullback-Leibler item selection method with root-N adjustment) item selec-

tion methods, estimations were made according to both EAP and MAP methods. The item start-

ing rule for each condition is the same as for the item selection method. 5x2x3 (30) simulation 

application including stopping criterion, estimation method and correlation was carried out.  

# Run the MCAT simulations with mirtCAT function and store results 

design <- list(min_SEM = 0.4) 

mcat1 <- mirtCAT(mo = mod, local_pattern = responsepattern, method = ' ', 

start_item = " ", criteria = " ", design = design)  

When the application is completed, the results can be reached by running the mcat1 object 

where the results are saved. The mirtCAT package presents the avarage number of items ad-

ministered, the ability parameter and true ability parameter for each dimension, and the standard 

errors of these parameters in the output of the simulation. If researchers ask for examining the 

test efficiency or the effect of different MCAT simulation designs on test efficiency; bias and 
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RMSE values can be computed. In this situation, firstly, an object should be formed in which 

theta estimates of both dimensions are listed. Theta estimates are collected in a single object 

with the laply() function that can be computed using the bias() and RMSE() commands 

of the SimDesign (Chalmers et al., 2020) package, with the following code: 

#Show average number of items answered, theta estimations, bias and RMSE 

itemsanswered <- laply(mcat1, function(x) length(x$items_answered)) 

mean(itemsanswered) 

estimation1 <- laply(mcat1, function(x) x$thetas[1]) 

estimation2 <- laply(mcat1, function(x) x$thetas[2]) 

bias(thetas[,1], estimation1) # Compute bias  

bias(thetas[,2], estimation2) 

RMSE(thetas[,1], estimation1) # Compute root mean square error 

RMSE(thetas[,2], estimation2) 

cor(thetas[,1], estimation1) 

cor(thetas[,2], estimation2) 

According to the simulation outputs, the average number of items answered, bias, RMSE and 

the correlation between estimated θ and true 𝜃 ̂ (r(θ i, 𝜃 ̂j)) obtained for both dimensions are 

presented. The conditions with interdimensional correlations of 0.3, 0.6, and 0.9 are presented 

in Table 2, Table 3 and Table 4, respectively.  

Table 2. Statistics from MCAT when interdimensional correlation is 0.3 

Item  

Selection 
Estimation MTL Bias1 Bias2  RMSE1 RMSE2 r1(θi, 𝜃 ̂j) r2(θi, 𝜃 ̂j) 

Arule  EAP 67.057 -0.004 -0.013 0.374 0.398 0.926 0.917  
MAP 63.848 -0.008 -0.013 0.402 0.373 0.926 0.915 

Drule EAP 72.517 -0.02 0.002 0.373 0.398 0.927 0.917  
MAP 69.56 -0.05 -0.001 0.376 0.403 0.925 0.915 

Trule EAP 94.364 -0.017 0.000 0.355 0.396 0.934 0.917  
MAP 91.238 -0.018 0.001 0.359 0.399 0.932 0.916 

Wrule EAP 100.424 -0.016 0.004 0.357 0.392 0.933 0.919  
MAP 97.532 -0.016 0.003 0.359 0.395 0.932 0.918 

KLn EAP 103.496 -0.017 0.009 0.359 0.393 0.932 0.919 

  MAP 100.6 -0.02 0.005 0.366 0.397 0.929 0.917 

Note. MTL (Mean test length) represents the average number of items administered. 

When the correlation between dimensions is 0.3, the MCAT application resulting in the least 

average number of items was performed with the MAP estimation method and the ARule stop-

ping rule. However, when the Arule stopping rule was used, the RMSE value obtained for the 

first dimension was not below 0.40. The simulation application that resulted in the highest num-

ber of items was carried out with the KLn method. All MCAT applications ended with fewer 

items with the MAP estimation method. Correlation between estimated θ and true 𝜃 ̂calcula-

tions was high and similar in all conditions. All calculated bias values were negligible. 

As seen in Table 3, the increase in interdimensional correlation decreased the number of items 

required to terminate the MCAT application. The simulation that resulted in the least number 

of items was carried out with the Arule stopping rule and the MAP estimation method. All 

applications performed with the MAP estimation method ended with fewer items than the ap-

plications performed with EAP. The RMSE value for the second dimension was not below 0.4 
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for Arule, Drule, Trule and Wrule methods. Only, the RMSE value obtained for both dimen-

sions with the KLn method fell below 0.4. It should be noted that the KLn is the only method 

that can be used in common in unidimensional and multidimensional CAT applications. Corre-

lation between estimated θ and true 𝜃 ̂calculations and bias values were similar. The results 

obtained under the condition that the interdimensional correlation is 0.9 are presented in Table 

4. 

Table 3. Statistics from MCAT when interdimensional correlation is 0.6  

Item  

Selection 
Estimation MTL Bias1 Bias2  RMSE1 RMSE2 r1(θi, 𝜃 ̂j) r2(θi, 𝜃 ̂j) 

Arule  EAP 45.006 0.025 -0.024 0.375 0.41 0.928 0.918  
MAP 42.485 0.024 -0.023 0.385 0.414 0.924 0.916 

Drule EAP 46.05 0.024 -0.022 0.368 0.412 0.931 0.917  
MAP 43.839 0.017 -0.025 0.374 0.420 0.928 0.914 

Trule EAP 66.181 0.027 0.027 0.354 0.401 0.936 0.921  
MAP 58.440 0.026 -0.011 0.357 0.402 0.935 0.921 

Wrule EAP 64.706 0.023 -0.010 0.354 0.398 0.936 0.922  
MAP 63.014 0.023 -0.012 0.355 0.400 0.936 0.922 

KLn EAP 66.333 0.028 -0.016 0.352 0.393 0.937 0.925 

  MAP 64.840 0.024 -0.019 0.352 0.396 0.937 0.924 

Table 4. Statistics from MCAT when interdimensional correlation is 0.9 

Item  

Selection 
Estimation MTL Bias1 Bias2  RMSE1 RMSE2 r1(θi, 𝜃 ̂j) r2(θi, 𝜃 ̂j) 

Arule  EAP 12.832 0.019 0.009 0.375 0.386 0.932 0.926  
MAP 11.119 0.028 0.013 0.402 0.406 0.922 0.918 

Drule EAP 11.216 0.015 0.004 0.370 0.386 0.934 0.926  
MAP 9.820 0.022 0.01 0.390 0.401 0.927 0.92 

Trule EAP 10.849 0.022 0.008 0.356 0.380 0.940 0.928  
MAP 9.219 -0.018 0.035 0.383 0.398 0.931 0.922 

Wrule EAP 10.401 0.019 0.010 0.371 0.386 0.934 0.926  
MAP 8.975 0.031 0.022 0.388 0.388 0.929 0.926 

KLn EAP 10.84 0.026 0.018 0.367 0.376 0.935 0.930 

  MAP 9.645 0.022 0.014 0.377 0.397 0.933 0.922 

When the interdimensional correlation was 0.9, the number of items required to complete the 

MCAT simulation was greatly reduced. The result of the application that ends with the least 

number of items was obtained with the Trule stopping criterion and the MAP estimation 

method. When Arule and Drule stopping methods are used with MAP parameter estimation 

method, the RMSE value for the second dimension was not below 0.4. In line with the simula-

tion results, it was observed that the Arule and Drule methods gave similar results in all condi-

tions. However, since they finished the application with fewer items, it was observed that alt-

hough they provided the desired RMSE value in the first dimension, they could not provide in 

the second dimension. Simulations performed using the MAP estimation method in all condi-

tions resulted in fewer items than EAP. As the interdimensional correlation increased and the 

structure approached unidimensionality, the methods gave results closer to each other and in all 

conditions KLn provided the desired stopping rule for both dimensions. In all conditions, r(θ i, 

𝜃 ̂j) obtained for both dimensions was high and similar. Bias for all dimensions was negligible.  
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2.2. Simulation Study 2: The Between-item Dimensionality Model  

In simulation study 1, MCAT simulations were performed with the stopping rule not custom-

ized. In simulation study 2, MCAT simulations were performed according to the between item 

dimensionality model by customizing the stopping rule for each dimension. Interdimensional 

correlation values and stopping methods were used the same as Study 1. Due to the fact that the 

necessary packages are loaded in the first example, the packages will be activated directly in 

this example. The packages required for this study are called via commands written to the con-

sole. In order to MCAT Simulation results to be reproducible, the set.seed() command is 

used.  

library(mirt) 

library(mirtCAT) 

library(mvtnorm) 

library(plyr) 

library(SimDesign) 

set.seed(2222) 

According to the between-item dimensionality model for the MCAT simulation, parameters for 

a multidimensional test consisting of 600 polytomous items and 2 dimensions were generated. 

Item parameters were generated for polytomous items with four categories and Multidimen-

sional Graded Response Model (MGRM) was chosen as the MIRT model. The item parameters 

are distributed in the same way as in the study of Jiang, Wang, and Weiss (2016). The a param-

eters were drawn from the uniform normal distribution (a ~ U (1.1, 2.8)). First category bound-

ary parameter (d1) were drawn randomly from the uniform distribution (d1~ (0.67, 2)), second 

category boundary parameter from (d1~ (-0.67, 2-0.67)) and third category boundary parameter 

from (d1~ (-0.67, -2)). Thus, all item bounce parameters ranged from [-2,2]. After that, the 

generated parameters were combined in a single dataset. 

Generate Multidimensional IRT parameters  

testlength <- 600 # Bank size 

N <- 1000 # Sample size 

# Generate  parameters  

itemnames <- paste0("Item.", 1: testlength) 

a <- matrix(runif(testlength *2, 1.1, 2.8), testlength) 

a[1:300, 2] <- a[301:600, 1] <- 0 

d1 <- runif(n = 600, min = 0.67, max = 2) # Generate first category boundary 

parameter 

d2 <- d1 - runif(n = 600, min = 0.67, max = 1.34)  

d3 <- d2 - runif(n = 600, min = 0.67, max = 1.34) 

d <- as.matrix(cbind(d1, d2, d3), ncol = 3) 

parameters <- data.frame(a, d) # Combine parameters in a single dataset 

colnames(parameters) <- c('a1', 'a2', paste0('d', 1:3))  

In the next step, the variance-covariance matrix of the ability parameters for the two-dimen-

sional structure is demonstrated on a matrix (cov). For the two-dimensional structure, inter-

dimensional correlations were determined as 0.3, 0.6 and 0.9 between all dimensions. Ability 

parameters were drawn from the multivariate normal distribution (θ~(0,𝚺 )) depending on the 

defined correlations. Then the mod object was created and the response pattern was generated 

using this object. 
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#Set intercorrelations between latent traits 

latent_cov <- matrix(c(1, r, r, 1), 2, 2) 

#Generate theta parameters for 2 dimensions 

thetas <- rmvnorm(N, sigma = latent_cov) 

#Create mirt_object 

mod <- generate.mirt_object(parameters, itemtype = 'graded', latent_covari-

ance = cov)  

#Generate response pattern 

responsepattern <- generate_pattern(mo = mod, Theta = thetas) 

In the next stage, unlike the first example, the minimum SE values were determined for each 

dimension by customizing the commands. The simulation was stopped on the condition that 

each dimension had a minimum SE value below 0.4 using customNextItem(), ex-

tract.mirtCAT() and findNextItem () functions. In this regard, each dimension is 

considered as a block. 

As item selection criteria, Arule, Drule, Trule, Wrule and KLn methods were used. EAP and 

MAP estimation methods were used as in the first example. The stopping rules of the applica-

tion was determined by the customNextItem() function, the item selection method is de-

fined by the findNextItem() function. A total of 30 simulations including the stopping 

rule (5), the estimation method (2) and the correlation value (3) were carried out. 

customNextItem <- function(design, person, test){ 

browser()  

} 

customNextItem <- function(design, person, test){ 

block1 <- 1:300 

block2 <- 301:600 

#Stop when the SE value falls below 0.4. 

total <- sum(!is.na(extract.mirtCAT(person, 'items_answered'))) 

if(total< 300 && extract.mirtCAT(person, 'thetas_SE')[1] >= 0.4){  

block <- block1 

} else if(total < 600 && extract.mirtCAT(person, 'thetas_SE')[2] >= 0.4){ 

block <- block2 

} else return(NA)  

ret <- findNextItem(person=person, design=design, test=test, subset=block, 

criteria = '') 

ret 

} 

In the last step, simulation design was constructed with mirtCAT() function. Average number 

of items answered, bias, RMSE and the correlation between estimated θ and true 𝜃 ̂values cal-

culated with the commands presented below.  

mcat2 <- mirtCAT(mo = mod, local_pattern = responsepattern, method = ' ', 

start_item = " ", criteria = " ", 

design = list(customNextItem=customNextItem))  

  

#Show average number of items answered, bias, RMSE and r(θ i, ,𝜃 .j). 
itemsanswered <- laply(mcat2, function(x) length(x$items_answered)) 

mean(itemsanswered) 

estimation1 <- laply(mcat2, function(x) x$thetas[1]) 
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estimation2 <- laply(mcat2, function(x) x$thetas[2]) 

bias(thetas[,1], estimation1) # Compute bias  

bias(thetas[,2], estimation2) 

RMSE(thetas[,1], estimation1) # Compute root mean square error 

RMSE(thetas[,2], estimation2) 

cor(thetas[,1], estimation1) 

cor(thetas[,1], estimation1) 

The average number of items administered, bias, RMSE and the correlation between estimated 

θ and true 𝜃 ̂ (r(θ i, 𝜃 ̂j)) obtained for both dimensions are as follows. The values calculated 

when the correlation is 0.3 are presented in Table 5.  

Table 5. Statistics from MCAT when interdimensional correlation is 0.3 

Item  

Selection 
Estimation MTL Bias1 Bias2  RMSE1 RMSE2 r1(θi, 𝜃 ̂j) r2(θi, 𝜃 ̂j) 

Arule  EAP 12.035 -0.02 0.011 0.359 0.356 0.938 0.934  
MAP 9.986 -0.013 0.014 0.388 0.397 0.928 0.918 

Drule EAP 16.27 0.001 0.002 0.386 0.353 0.927 0.935  
MAP 13.887 0.022 0.014 0.403 0.398 0.922 0.918 

Trule EAP 12.035 -0.02 0.011 0.359 0.356 0.938 0.934  
MAP 9.986 -0.013 0.013 0.388 0.397 0.928 0.918 

Wrule EAP 12.035 -0.020 0.011 0.359 0.356 0.938 0.934  
MAP 9.986 -0.013 0.014 0.388 0.397 0.928 0.918 

KLn EAP 12.101 0.006 0.010 0.370 0.354 0.933 0.935 

  MAP 10.240 0.006 0.002 0.390 0.398 0.927 0.918 

When the interdimensional correlation for the between-item dimensionality model is 0.3, the 

number of items required to finish the simulation is similar for the conditions. However, when 

the Drule method was used as stopping rule, average number of items administered were higher 

compared to other methods. The condition with the highest number of items administered is the 

condition in which the Drule stopping rule and EAP estimation method are used. Under the 

condition that the Drule stopping rule and EAP estimation method are used, the RMSE value 

obtained for the first dimension is more than 0.4. The results obtained from simulations using 

the Trule and Wrule stopping rules are the same. All simulations ended with fewer items with 

the MAP estimation method. The calculated bias and r1(θ i, 𝜃 ̂j) values are similar for all 

conditions. The values calculated for the condition that the interdimensional correlation is 0.6 

are presented in Table 6. 

Table 6. Statistics from MCAT when interdimensional correlation is 0.6 

Item  

Selection 
Estimation MTL Bias1 Bias2  RMSE1 RMSE2 r1(θi, 𝜃 ̂j) r2(θi, 𝜃 ̂j) 

Arule  EAP 11.52 -0.012 0.002 0.35 0.355 0.94 0.934  
MAP 9.661 -0.007 0.005 0.375 0.396 0.931 0.919 

Drule EAP 15.686 -0.003 -0.009 0.374 0.356 0.931 0.934  
MAP 13.643 0.018 0.009 0.389 0.394 0.926 0.919 

Trule EAP 11.52 -0.012 0.002 0.350 0.355 0.940 0.934  
MAP 9.661 -0.007 0.005 0.375 0.396 0.931 0.919 

Wrule EAP 11.52 -0.012 0.002 0.350 0.355 0.94 0.934  
MAP 9.661 -0.007 0.005 0.375 0.396 0.931 0.919 

KLn EAP 11.648 -0.01 -0.008 0.349 0.367 0.940 0.929 

  MAP 10.015 0.003 -0.002 0.373 0.399 0.932 0.917 
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Under the condition that the interdimensional correlation is 0.6, the average number of items 

administered is fewer than the correlation is 0.3. The average number of items obtained from 

the simulation application performed with the Drule stopping rule is higher than other methods. 

The same results were obtained with Arule, Trule and Wrule methods. Bias and r1(θ i, 𝜃 ̂j) 

values are very close to each other for all conditions.  

Finally, for the between-item dimensionality model, the values calculated according to the con-

dition that the interdimensional correlation is 0.9 are presented in the Table 7. 

Table 7. Statistics from MCAT when interdimensional correlation is 0.9 

Item  

Selection 
Estimation MTL Bias1 Bias2  RMSE1 RMSE2 r1(θi, 𝜃 ̂j) r2(θi, 𝜃 ̂j) 

Arule  EAP 9.302 0.002 -0.004 0.316 0.363 0.950 0.931  
MAP 7.793 0.010 0.006 0.354 0.390 0.938 0.922 

Drule EAP 13.283 -0.002 -0.001 0.342 0.367 0.941 0.930  
MAP 11.585 0.018 0.013 0.361 0.398 0.935 0.918 

Trule EAP 9.302 0.002 -0.004 0.316 0.363 0.950 0.931  
MAP 7.793 0.010 0.006 0.354 0.390 0.938 0.921 

Wrule EAP 9.302 0.002 -0.004 0.316 0.363 0.950 0.931  
MAP 7.793 0.010 0.006 0.354 0.390 0.938 0.921 

KLn EAP 9.346 0.002 -0.003 0.329 0.36 0.946 0.933 

  MAP 7.885 0.015 0.013 0.358 0.394 0.937 0.920 

When the interdimensional correlation is 0.9, that is, if the structure is similar to   unidimen-

sional structure, the average number of items administered is the fewest. As in other conditions, 

simulations performed with the MAP estimation method resulted fewer items than simulations 

performed with EAP method. The calculations obtained using the stopping rules Arule, Wrule 

and Trule are the same. Simulation with Drule method ended with more items and higher RMSE 

values than others. The bias values calculated for both dimensions are negligible. 

2.3. Simulation Study 3: Comparison of MCAT and CAT Results 

In the third simulation study presented , we investigate the effect of treating multi-unidimen-

sional structures as unidimensional structures on adaptive testing results. In line with the pur-

pose, using the item and ability parameters used in the second example, a unidimensional CAT 

simulation was performed and the outputs were compared with the MCAT simulation. Since it 

is an item selection method that can be used in both CATs and MCATs, the "KLn" method was 

used. MAP was used as the estimation method. The data generated for the two-dimensional 

structure is exported in csv format with the Haven package (Wickham & Miller, 2020). After 

obtaining the item and ability parameters with the commands example 2, the parameters were 

exported through the following commands, the “.csv” files were divided and saved for each 

dimension. 

#Export parameters  

library(haven) 

df <- data.frame(a1 = a[,1], a2= a[,2], d1 = d[,1], d2 = d[,2], d3 = d[,3]) 

write.csv(df, "parameters.csv") 

write.csv(thetas, "thetas.csv") 

After the data sets were saved separately for each dimension, simulation studies continued with 

“.csv” files. In the UCAT simulation phase, SE(𝜃 ̂) <0.4 stopping criteria is determined as in 

the MCAT examples.  
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#Design and start simulation 

design = list(min_SEM = 0.4, max_items=300) 

mcat3 <- mirtCAT(mo=mod, local_pattern=response, start_item = 'KLn', criteria 

= 'KLn', design = design) 

Average number of items administered, bias, RMSE and r (θ i, 𝜃 ̂j)  values obtained from CAT 

simulation performed with MCAT parameters are presented in the Table 8. 

Table 8. Statistics from UCAT simulation. 

Compared to MCAT and unidimensional CAT in terms of the average number of items admin-

istered, MCAT has a lower average number of items in all conditions. As the interdimensional 

correlation increases, the average number of items decreases. Unidimensional CAT simulation, 

on the other hand, resulted in a similar number of items in all conditions. In addition, in MCATs, 

SE ≤ 0.4 criterion was provided for both dimensions, whereas in CATs, this criterion was only 

provided for the first dimension when the correlation was 0.3 and 0.9. As in MCAT simulations, 

bias values are negligible in UCAT. 

3. DISCUSSION and CONCLUSION 

Since CATs are used for selection, classification and diagnosing purposes, it has important 

functions for society (Chang, 2015). Technological developments have increased the popularity 

of CAT applications. With CATs, test length and test session duration are reduced compared to 

the paper-pencil applications of both achievement tests and psychological scales. While this 

decrease, the increase in measurement precision makes adaptive testing applications more 

important. Through the widespread use of MIRT models, MCAT applications are becoming 

widespread. Researchers frequently apply simulations before CAT and MCAT applications to 

design the appropriate design for their studies. In this study, data were generated using Monte 

Carlo simulations by using within-item and between-item dimensionality models. With the 

generated data, MCAT simulation application codes customized according to different 

conditions were presented. R programming language was used in this study as it is an open-

source and free software. The simulation findings obtained under different conditions are 

shared. The average number of items administered, RMSE, BIAS and r (θ i, 𝜃 ̂j) values obtained 

using different interdimensional correlation values, different item selection criteria and 

different parameter estimation methods were examined. 

3.1. Main Findings 

In this study, the steps of MCAT simulations according to within-item and between-item 

dimensionality models with the mirtCAT (version: 1.10) package in the RStudio (version: 

1.3.1073) software environment were demonstrated. In more detail, multidimensional models 

applied at the item level to MCAT under within-item and between-item dimensional models 

using three interdimensional correlation levels, five item selection methods and two parameter 

estimation methods. MCAT and CAT results performed with data generated according to the 

Dimension Interdimensional 

Correlation 

MTL Bias RMSE r (θ i, 𝜃 ̂j) 

1 0.3 5.335 0.003 0.398 0.924 

2  5.130 -0.008 0.407 0.914 

1 0.6 5.142 -0.004 0.412 0.917 

2  5.120 0.004 0.412 0.911 

1 0.9 5.326 -0.006 0.393 0.923 

2  5.120 -0.005 0.401 0.917 
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between-item dimensionality model were compared. Results showed that MCAT simulations 

performed with data produced according to the multidimensional models, as the 

interdimensional correlation increased, the average number of items required to terminate the 

test decreased. In the MCAT simulations performed according to the within-item 

dimensionality model, the number of items required to complete the test was higher than the 

between-item dimensionality model. While increasing the correlation in the within-item 

dimensionality model greatly changes the average number of items, the average number of 

items is quite similar in the between-item model.  

Wang and Chen (2004) concluded in their study that the higher the correlation between the 

traits, the less number of items required to reach the same test reliability degree and MCATs 

will be more efficient than CATs. Similarly, in this study, as the correlation between features 

increased, the number of items required to complete the MCAT according to the standard error 

rule decreased. In other words, as the correlation value between traits increases, the number of 

items required to achieve similar accuracy decreases. And, MCAT was more effective than 

CAT at meeting the required termination criteria. 

When comparing UCATs and MCATs with data generated according to MIRT, the average 

number of items used in UCAT simulation is higher than MCAT. According to MCAT results, 

SE <0.4 rule was provided for each dimension, but according to UCAT results, this rule was 

not provided for all dimensions. A similar result was obtained in Paap, Born, and Braeken’s 

(2018) study. They conducted simulations with the standard error-based termination rule for 

different design cells and concluded that while meeting the MCAT's termination criteria, CAT 

failed 80% to meet the termination criterion. 

According to the findings obtained, ability parameter estimation method, interdimensional 

correlations and item selection methods did not much affect measurement fidelity. However, as 

in the Yao’s (2013) study, it can be said that MAP performs similar or better than EAP. The 

bias values obtained for the different conditions indicate that MCATs give unbiased estimates 

of ability. The size of interdimensional correlation, item selection criterion and parameter 

estimation method did not have a considerable effect on the calculated BIAS values for three 

examples. An interesting finding obtained as a result of the simulations was that KLn was the 

only method that provided the standard error stopping criteria, regardless of the methods used. 

3.2. Future Directions 

On the basis of results, for MCAT simulations that researchers will design according to the 

standard error-based stop rule, it is suggested to add MAP as the estimation method to the 

simulation conditions. If the standard error rule cannot be defined separately for each 

dimension, it is recommended to add the KLn rule as the item selection criterion to the 

simulation conditions. It should be noted that if the stopping rule is not defined for each 

dimension in MCAT applications, the standard error-based stop rule may not be provided. If 

the stopping rule is defined by customizing for each dimension, the items continues to be 

applied until the termination rule is met in all dimensions. Therefore, it is required to specify 

the standard error rule by customizing it at the desired level for each dimension. If the structure 

is multidimensional, it is recommended to use MCAT instead of applying separate CAT to each 

dimension. 

Lastly, although the number of MCAT studies has increased in the last decade, more research 

is needed to investigate scenarios beyond the factors included in the study. For example, 

different stopping rules, content balancing and other MIRT models can also be investigated. It 

is important for MCAT practitioners to know with which criteria they can perform MCAT 

applications more efficiently and effectively. 
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