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Highlights 

• This paper focuses on two different analytic schemes. 

• We have describe gravity waves in infinite deep water, in the sense of conformable derivative. 

• We have drawn the 2D-3D and contour surfaces under the appropriate values of constants. 
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Abstract 

In this work, we use two different analytic schemes which are the Sine-Gordon expansion 

technique and the modified exp ( )( )− -expansion function technique to construct novel exact 

solutions of the non-linear Schrödinger equation, describing gravity waves in infinite deep water, 

in the sense of conformable derivative. After getting various travelling wave solutions, we plot 

3D, 2D and contour surfaces to present behaviours obtained exact solutions.    
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1. INTRODUCTION 

 

The NLSE is an intermediary wave function that allows us to conclude in the analysis of a quantum system. 

Quantum mechanics calculate the probability of a particle at a certain location or the probability of having 

a certain momentum. It realizes the possibility with the help of a wave function. The purpose of this function 

is not to find the location but to calculate the probability of the position and the NLSE is one of them. It is 

very practical to study the NLSE   equation in spherical coordinates if the potential of a physical system 

has a spherically symmetrical distribution. The NLSE is an equation that shows the change in space and 

time. 

 

The NLSE is a usually used equation in physical science. An example of how useful the NLSE is how 

optical pulses are propagated in fibres. The NLSE is used to model telecommunications, hydrodynamics, 

non-linear acoustics, non-linear dispersive waves, plasmas, optics, water waves, and the dynamics of 

particles [1]. 

 

http://dergipark.gov.tr/gujs
https://orcid.org/0000-0002-5663-0007
https://orcid.org/0000-0002-5134-4431
https://orcid.org/0000-0002-1402-1457
https://orcid.org/0000-0002-6089-1517


820  Tugba YAZGAN, et al. / GU J Sci, 36(2): 819-843 (2023) 

 
 

Someone the important improvement in mathematics in the last years has been the solution of certain types 

of the NLSE. The numeric simulation and analytic types of the NLSE   plays a significant role in the design 

optimization of optic transmission systems. Many authors have researched analytic and numeric solutions 

of the NLSE and other governing equations using different methods. Some of methods are the inverse 

scattering transform technique [2], the extended sinh Gordon equation expansion technique [3], the 

improved Bernoulli sub-equation function technique [4, 5], the homotopy analysis technique [6], the 

variational principle [7], the generalized Kudryashov technique [8], the extended tanh function technique 

[9], the split-step technique [10], the finite difference technique [11], the variable separated ODE technique 

[12], the Fourier pseudospectral technique [13]. 

When many events in nature and interdisciplinary sciences are modelled mathematically, they are defined 

by non-linear partial differential equations. Therefore, many scientists have emphasized on the soliton 

solutions of non-linear, especially partial differential formation equations of late years. Today, different 

types of solitons have been observed both experimentally and theoretically in science. The NLSE accept 

solutions that are usually known as solitons or self-reinforcing waves that preserve form and velocity during 

spread. Varied types of solitons form when the non-linear term of the NLSE cancels with the distribution 

terms.  Soliton solutions were obtained both analytically and later work on the soliton was accelerated. As 

the soliton, the solitary wave noticed in a water channel first today. It is used in many fields of physics like 

fluid mechanics, fundamental particle physics, biophysics. The NLSE is seen in non-linear optics, 

hydromagnetic and plasma waves and such [14-20] . 

In this study, we will examine some wave solutions of the NLSE handling the Sine Gordon Expansion 

technique and the modified exp ( )( )− -expansion function technique. 

The NLSE describing gravity waves in deep water. It is given as in the literature [21-25], 
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where t   and x  are the time and longitudinal coordinates when 0k and ( )0 0k =  signify the number of 

wave and wave frequency, respectively. Here, 0 0gk =  and where g  is gravity acceleration and 

0

02
g

d
c

dk k


= =  is group velocity. 

In this work, we focus on finding solitary wave solutions of Equation (1) in conformable sense.  

 

2. PRELIMINARIES 

 

Definition 2.1. Let ℎ: [0,∞) → ℝ be a given function, the conformable derivative of h  of order is defined 

as, 

( )( )
( ) ( )1

,lim
0

h
h

t t h t
L t
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 

−+ −
=

→
 

 

for all 0t  , ( 0,1   [26]. 

 



821  Tugba YAZGAN, et al. / GU J Sci, 36(2): 819-843 (2023) 

 
 

Theorem 2.2. Let L be the derivative operator with order  and ( 0,1   and ,h k  be  -differentiable 

at a point 0.t   Then [26,27], we can write the following properties 

 

i. ( ) ( ) ( ) , , .L a h bk aL h bL k a b  + = +    

ii. ( ) , .p pL t pt p



−=    

iii. ( ) ( ) ( ).L hk h L g k L f  = +  

iv. 
( ) ( )

2
.

kL h hL kh
L

k k

 



− 
= 

 
 

v. ( ) 0,L  =  for all constant functions ( ) .h t =  

vi. If h  is differentiable then ( )( ) ( )1 .
dh

L h t t t
dt





−=  

 

Proposition 2.3. Let L be the derivative operator with order   and ( 0,1  . Then 

1. ( )1 0.L =  

2. ( ) 1 , .cx cxL e cx e c



−=   

3. ( ) 1sin cos , .L bx bx bx b



−=   

4. ( ) 1cos sin , .L bx bx bx b



−= −   

5. 1.
t

L





 
= 

 

 

 

3. MATERIAL METHOD 

 

3.1. Fundamental Properties of SGEM 
 

In this part, we define the SGEM. We need two important equations prior to giving the common properties 

of Sine Gordon Equations [28, 29]. 

 

Primarily, let’s presume that the Sine Gordon equation is given as following [30,31,32]; 

 
2 sin( ),xx ttu u m u− =                                                                                 (2) 

 

where ( , )u u x t= , m is a real fixed. Implementing the wave transform ( , ) ( ),u u x t U = = ( )x ct = −

to Equation (2), 
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. . , . ,
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t tt

d udU d d
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d udU d d
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 = = = =

 = = − = =

                                                               

(3) 

 

Equation (3) is acquired. After putting Equation (3) into Equation (2) and when necessary arrangements 

are made, we acquire the following non-linear ordinary differential equation;
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( )

2

2 2
sin ,
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m
U U

c
 =

−
                                                                                           (4) 

where ( ),U U  =  is the amplitude of the travelling wave and c is the speed of the travelling wave. 

Equation (4) can be written as follows; 

( )

2

2
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2 2
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2 21
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K
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                                                                                (5) 

where K is the constant of integration. Substituting ( )0,
2

U
K w = =  and 

( )

2
2

2 21

m
a

c
=

−
in Equation  

(5), gives; 

( )sin ,w a w =
                                                                                (6) 

setting 1a =  in Equation (6), gives; 

( )sin .w w =                                                                                  (7) 

If Equation (7) is solved by the method of separation of variables, we get the following two important 

properties.; 

( )( ) 2 2

1

2
sin( ) sin sec ( ),

1
p

pe
w w h

p e




 

=

= = =
+

                                        (8) 
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where p  is the integral constant and non-zero. 

 

After these two major features, as for the definition of SGEM, to get the solution of non-linear partial 

differential equation as in the form below; 

( ), , , , , , , ,... 0,x t xx tt xt xxx xxtP u u u u u u u u =                                                    (10) 

we consider 

( ) ( ) ( ) ( )1

0

1

tanh sec tanh .
n

i

i i

i

U B h A A   −

=

= + +  
                                     (11) 

Equation (11) can be rearranged with respect to Equation (8) and Equation (9) as follows; 

( ) ( ) ( ) ( )1

0

1

cos sin cos .
n

i

i i

i

U w w B w A w A−

=

= + +  
                                                  (12) 

We implement the balance technique to define the value of n  under the highest power non-linear term and 

highest derivative in the ordinary differential equation. We assume that the summation of coefficients of 

( ) ( )sin cosi jw w  with the same power is zero, this gives a system of equations. Through software, we 

solve the system of equations to get the values of , ,  and .i iA B c  Lastly, substituting the values of 

, ,  and i iA B c into Equation (11), we obtain the new travelling wave solutions to the Equation (10). 
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3.2. Fundamental Properties of MEFM             

 

In this section the modified exp ( )( )− -expansion function method is regulated. Technique [27,30] is a 

developed form of exp ( )( )− -expansion function technique. 

 

Let's think the non-linear partial differential equations to implement this technique as follows; 

 

( )2, , , , , ,... 0,x t xx tt txP u u u u u u   =
                                                                                                    (13) 

where ( , )u u x t= is unknown function, P is a polynomial that has ( , )u x t  function and its partial 

derivatives respect to x and t , ( 0,1   is the order of the conformable derivative. 

 

Step 1. Suppose the traveling wave transformation is 

( , ) ( ),u x t U = ,
lt

x





= −

                                                     (14) 

where l  is a non-zero constant that can be defined later. Using partial derivatives of the Equation (14) into 

Equation (13), the Equation (13) is converted to a non-linear ordinary differential equation defined as; 

( ), , , ,... 0,N U U U U   =
                                                                 (15) 

where N  is a polynomial depend on U  

 

Step 2. We assume the traveling wave solution of Equation (15) can be phrase as ; 
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where ( ), , 0 ,0i jA B i N j M    are constants can be defined later, 0, 0,N MA B  and ( ) = 

solves the following ordinary differential equation;

 

( ) ( )( ) ( )( )exp exp .     = − +  +                                                                (17)
 

Thinking that we solved Equation (17), we achieve the five solution families as follows [33,34]: 

 

Family 1: When 
20, 4 0,   −   
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2 24 4
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Family 2: When 
20, 4 0,   −   
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2 24 4
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Family 3: When 
20, 0,  and 4 0,   =  −   
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exp ) 1( E


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                                                                                        (20) 

. 
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Family 4: When 
20, 0,  and 4 0,     − =  
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2

( ) 42
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E
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 
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Family 5: When 
20, 0,  and 4 0,   = = − =  

 

( ) ( )ln .E  = +                                                                   (22)
 

 where 0 1 0 1, , , , , , , , , ,N MA A A B B B E    are constants and can be determined later. Using the 

homogenous balance technique among the highest non-linear terms with the highest order derivatives of 

U in Equation (16) it can be find a relationship among  N  and M  

 

Step 3: Substituting Equation (17) along with solution families into Equation (16) we have 

 a polynomial of ( )( )exp  .  After all coefficients of the similar power of ( )( )exp    are equated to 

zero, returns a system of algebraic equations in terms of 0 1 0 1, , , , , , , , ,N MA A A B B B E  . As a result of 

this process, the obtained values of coefficients substituting into Equation (16), it gives the traveling wave 

solutions of Equation (13). 

 

4. APPLICATIONS OF APPROACHES SGEM AND MEFM 

 

4.1.  SGEM for the Conformable NLSE Equation in Deep Water 

 

 
22

20 0 0

2 2

0

0,
8 2

g

kU U U
i c U U

t x k x





    
+ − − = 

   
                                      (23) 

where   is conformable derivative order in 0 1  . 

Firstly, we consider the travelling wave transformation as following, for convert the non-linear partial 

differential equation Equation (23) to a linear ordinary differential equation  

( , ) ( ) ,    , ,i bt q t
U x t e ax px

 
  

 
=  = − = −                                       (24) 

where , , ,a b p q  are nonzero constants. We have the following corresponding to real part and imaginary 

part, respectively. 

 
2 2 2
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0

2

0

.
4

g

p
b a c

k

 
= − 

 
                                                                   (26) 

Using homogeneous balance principle between  and 
3   , we get 1n = . 

We put 1n =  into the Equation (12), it gives 

 

( ) ( ) ( )1 1 0sin cos .B w A w A = + +                                                                 (27) 

 

. 
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Substituting Equation (27) and its second-order derivative into Equation (25), we obtain a trigonometric 

function with different degrees. Equating to zero all sum of coefficients of the same power of the 

trigonometric functions, we obtain an algebraic equation system. 

The solution of this algebraic equation system gives the coefficients of Equation (11) i.e  
  

1 1 0, ,B A A  and , , ,a b p q .  

 

The graphs of the solutions of Equation (1) with this method are given in Figure 1, 2, 3, 4, 5, 6, 7.  

 

After then we have the following situations: 
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Case 4:  
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                                                                                                                                                       (33) 

Case 7:  
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Figure 1. The 3D and contour graphics of Equation (28) for the values of 

0 1 00.9, 0.2, 0.1, 1.45, 0.12, 0.632456k p a B = = = = = =  and 10t =   

 

     

 

 

Figure 2. The 3D and contour graphics of Equation (29) for the values of 

0 00.9, 0.2, 0.1, 1.45, 0.632456k p a = = = = = and 10t =   
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Figure 3. The 3D and contour graphics of Equation (30) for the values of 

0 00.9, 0.2, 0.2, 1.45, 0.632456k p a = = = = = and 10t =   

      

 

 

Figure 4. The 3D and contour plots of Equation (31) for the values of 

0 0 10.9, 0.2, 0.2, 0.11, 1.45, 0.632456, 1,k p q a A = = = = = = = and 10t =   
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Figure 5. The 3D and contour graphics of Equation (32) for the values of 

0 0 10.9, 0.2, 0.2, 0.11, 1.45, 0.632456, 1.58114, 1,gk p q a c A = = = = = = = = and 10t =   
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Figure 6. The 3D and contour graphics of Equation (33) for the values of 

0 0 10.9, 1.2, 0.1, 0.2, 1.45, 1.54919, 0.645497, 1,gk p q a c A = = = = = = = = and 10t =   

 

   

 

 

Figure 7. The 3D and contour graphics of Equation (34) for the values of 

0 00.9, 0.2, 0.1, 0.2, 1.45, 0.632456, 1.58114,gk p q a c = = = = = = = and 10t =   
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4.2. MEFM for the Conformable NLSE Equation in Deep Water 

In this part, we focus on the soliton solutions Equation (1) by the modified exp ( )( )−  -expansion 

function method.  

We use travelling wave transform in Equation (24) as, 

( , ) ( ) ,    , ,i bt q t
U x t e ax px

 
  

 
=  = − = −                                       (35) 

We have the following non-linear ordinary differential equation corresponding to real part and imaginary 

part, respectively 

  
2 2 2

30 0 0 0

2 2

0 0

0,
8 8 2

g

p a k
q c p

k k

   
 − + −  −  = 

 
                                      (36) 

0

2

0

.
4

g

p
b a c

k

 
= − 

 
                                                                              (37) 

 

Using homogeneous balance principle between  and 
3 , we get a connection for M  and N as, 

 

1 .M N+ =  

 

For appropriate integer values of M and N , one can acquire different situations. We have select 1M =

and 2N =  values, the solution form as given following yields 

( )
( ) ( )

( )

2

0 1 2

0 1

,
A Ae A e

B B e

 




 −



−

−

+ +
 =

+
                                                                (38) 

Substituting Equation (38) and its second order derivative into Equation (36),  some soliton solutions have 

emerged as presented. 

The graphs of the solutions of Equation (1) with this method are given in Figure 8, 9, 10, 11, 12, 13, 14, 

15. 

Case 1:  

2 2 2

0 2 0 0 0 0
1 0 1 2 2

2 0 2 0

2
0, 0, 0, , , ,

8 2
g

i k A A p a A
A B B q c p

a A k A k

 
 = = = = = = − −  

Using the coefficients in the upper part, the following solution families are acquired. 

 

 

 

 

 

 

 

 

 

. 

 

. 
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Family 1: 
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                                                       (39) 

when 
2 4 0. − 

 

Family 2:  
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                                                   (40) 

when 
2 4 0. −   

Family 5:  

( ) ( ) ( )
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when 
20, 0,  and 4 0.   = = − =  
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Figure 8. The 3D, 2D and contour graphics of Equation (39) for the values of 

0 0 0 20.9, 0.2, 0.5, 1.2, 1.45, 0.632456, 1.58114, 0.12, 2, 10gk p q a c A A E = = = = = = = = − = = and 10t =   
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Figure 9. The 3D, 2D and contour graphics of Equation (40) for the values of 

0 0 0 20.9, 0.2, 0.5, 1.2, 1.45, 0.894427, 2.23607, 0.12, 2, 10gk p q a c A A E = = = = = = = = − = = and 10t =   

 

      

 

 

Figure 10.  The 3D, 2D and contour graphics of Equation (41) for the values of 

0 00.9, 0.2, 0.5, 1.2, 1.45, 0.894427, 2.23607, 10gk p q a c E = = = = = = = = and 10t =   

Case 2:  

( )2 2 2 22 2
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Using the coefficients in the upper part, the following solution families are acquired. 

Family 1: 

( ) ( ) ( )
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 (42) 

when 
2 4 0. −   

    

 

 

Figure 11. The 3D, 2D and contour graphics of Equation (42) for the values of 

0 00.9, 0.2, 0.5, 1.2, 0.45, 0.894427, 2.5, 1, 10k p q a E   = = = = = = = = = and 10t =   
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Family 2: 
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Figure 12. The 3D, 2D and contour graphics of Equation (45) for the values of 

0 00.9, 0.2, 0.5, 1.2, 0.45, 0.894427, 2.5, 1, 10k p q a E   = = = = = = = = = and 10t =   
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Figure 13. The 3D, 2D and contour graphics of Equation (46) for the values of 

0 00.9, 0.2, 0.5, 1.2, 0.45, 0.894427, 10k p q a E = = = = = = = and 10t =   
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Case 3: 
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Using the coefficients in the upper part, the following solution families are acquired. 
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 when 
2 4 0. −   

      

 

Figure 14. The 3D, 2D and contour graphics of Equation (47) for the values of 

0 00.9, 0.2, 0.5, 1.2, 0.45, 0.894427, 2.23607, 0.5, 1, 10gk p q a c E   = = = = = = = = = = and 10t =
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Family 2: 
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when 
20, 0,  and 4 0.   =  −   
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Figure 15. The 3D, 2D and contour graphics of Equation (50) for the values of 

0 00.9, 0.1, 0.5, 0.2, 0.45, 0.774597, 3.87298, 1, 10gk p q a c E  = = = = = = = = = and 10t =   

5. RESULTS 

 

We mentioned two analytic methods which are the SGEM and the modified exp ( )( )− -expansion 

function technique to find out different types of soliton solutions to the NLSE describing gravity waves in 

deep water. We use the definition of the conformable derivative in calculations. We have drawn the 2D-3D 

and contour surfaces under the appropriate values of constants. When we check against the acquired 

solutions with [25, 35, 36, 37], we observe that all solutions obtained corresponding to experimental results. 

For this reason, we think that providing more calculation convenience numerically of submitted soliton 

solutions may be much useful particularly in engineering fields. In addition, the recommended methods are 

very efficient and easy to application non-linear differential models such as governing Equation (1). 
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