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Abstract— Convolutional neural networks (CNNs) are one of 

deep learning methods that are often used to solve the problem of 

hyperspectral image classification (HSIC). CNN has a strong 

feature learning ability that can ensure more distinctive features 

for higher quality HSIC. The traditional CNN-based methods 

mainly use the 2D  CNN for HSIC. However, with 2D CNN, only 

spatial features are extracted in HSI. Good feature maps cannot 

be extracted from spectral dimensions with the use of 2D CNN 

alone. By using 3D CNN, spatial-spectral features are extracted 

simultaneously. However, 3D CNN is computationally complex. In 

this study, a hybrid CNN method, which is a combination of 3D 

CNN and 2D CNN, is improved to solve the two problems 

described above. Using hybrid CNN decreases the complexity of 

the method compared to using only 3D CNN and can perform well 

against a limited number of training samples. On the other hand, 

in Hybrid CNN, depthwise separable convolution (DSC) is used, 

which decreases computational cost, prevents overfitting and 

enables more spatial feature extraction. By adding DSC to the 

developed hybrid CNN, a hybrid depthwise separable 

convolutional neural network is obtained. Extensive applications 

on frequently used HSI benchmark datasets show that the 

classification performance of the proposed network is better than 

compared methods. 

Index Terms—3D Convolutional Neural Network, Depthwise 

Separable Convolution, Deep Learning, Hyperspectral Image 

Classificaiton 

I. INTRODUCTION

YPERSPECTRAL IMAGES (HSIs) consist of tens or

even hundreds of continuous narrow spectral bands with

high spectral resolution, which can ensure abundant spatial-

spectral feature information [1].  
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Since HSI has different spectral feature informations, it is 

commonly used in many fields such as agriculture, mining, 

astronomy, object tracking, military exploration, environmental 

monitoring, and vegetation [2-5]. In these applications, HSI is 

a major challenge for any classification method, as it includes 

multiple land cover classes resulting in high inter-class 

similarity and within-class variability. In recent years, many 

classification methods have been proposed to improve HSI 

classification (HSIC) performance. Since HSI contains rich 

spectral feature information, traditional classifiers such as 

support vector machines (SVM) [4], logistic regression [5], 

maximum likelihood [6], random forest [7] and k-nearest 

neighbors [5] have been proposed for HSIC. However, since 

these classification methods are based on spectral feature 

information, they cannot take full advantage of the important 

spatial feature information of HSIs. In this case, classification 

performance decreases. Nevertheless, traditional HSIC 

methods are based on handcrafted features with limited 

representation ability that do not fit well with the classification 

task [8]. 

 In recent years, deep learning-based techniques have made 

great advances in many computer vision tasks, such as object 

detection [9], natural language processing [10], semantic 

segmentation [11-12], and image classification [13-14], 

because they can automatically extract robust and distinctive 

features from the original data in a hierarchical manner. 

Progress in deep learning techniques takes HSIC to a novel 

level. The training phase of deep learning techniques 

automatically extracts the features and uses these extracted 

features in the classification phase. Stacked autoencoder (SAE), 

a typical deep learning method, can extract spatial-spectral 

feature information. Later, it can combine this information for 

HSIC [15]. Chen et al. [16] applied the concept of deep learning 

to the field of HSIC at first.  For spatial-spectral feature 

extraction and classification, they developed a method in which 

PCA, SAE and LR are used together. Tao et al. [17] proposed 

SAE based LR in which SAE and LR were used together to 

extract deep spectral features. Deep belief network (DBN) 

based classification is other deep learning methods used for HSI 

analysis. It has been proposed to combine the spatial feature 

information of HSI with spectral feature information [18]. Jia et 

al. [19] proposed a method in which PCA, hierarchical learning-

based feature extraction and LR were used together for HSI 

analysis based on DBN. Li et al. [20] proposed a new HSIC 

method using optimal DBN and texture feature enhancement. 

While deep features can be extracted hierarchically in a layer-
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based training process using SAE and DBN, training samples 

consisting of image patches to be input to these models need to 

be flattened to one dimension. In this case, spatial features in 

HSI cannot be fully used. Also, SAE and DBN are unsupervised 

learning algorithms and do not directly use informations of 

class while learning features [21]. Convolutional neural 

networks (CNN) are another deep learning method used for 

HSIC [22]. CNN has a strong feature learning ability that can 

ensure more distinctive features for higher quality HSIC [23]. 

The more distinctive the learned features are, the easier it will 

be to solve the classification problems [24]. This situation 

greatly improves the classification accuracy. Therefore, CNN-

based methods used in HSIC are one of the most effective 

methods used to extract deeper spatial, spectral or spatial-

spectral feature information. CNN-based methods are 

increasingly being applied as they effectively improve the 

HSIC performance. HSI is 3D data with two spatial dimensions 

(width, height) and spectral dimension (channel/depth). In 

CNN-based HSIC, mainly 2D CNN or 3D CNN is used for 

hierarchical feature extraction [25]. Chen et al. [26] proposed a 

3D CNN method consisting of several convolution and pooling 

layers to extract spatial-spectral feature information. Also, 

dropout layer and L2 regularization were used to overcome the 

overfitting problem caused by the limited training samples. Roy 

et al. [27] proposed a hybrid spectral CNN (HybridSN) for 

HSIC. The HybridSN consists of using 3D CNN and 2D CNN 

together. 3D CNN extracts common spatial-spectral features 

from a spectral band stack. 2D CNN on top of 3D CNN extracts 

spatial features. Ahmad [28] proposed a fast 3D CNN method 

using spatial-spectral feature information to achieve better 

classification performances in HSIC. Ge et al. [29] proposed a 

deep network architecture based on multibranch feature fusion 

with 3D CNN and 2D CNN with different kernel size for HSIC. 

They also used Mish activation function instead of ReLU. He 

et al. [30] proposed a multiscale 3D deep CNN (M3D-DCNN) 

that can learn 2D multiscale spatial feature and 1D spectral 

feature jointly for HSIC. Mu et al. [31] proposed a multiscale 

and multilevel spatial spectral feature fusion network for HSIC. 

In the proposed method, From 3D to 2D alternative residual 

block combines spectral feature information extracted from 3D 

CNN with spatial feature information extracted from 2D CNN. 

Zhong et al. [32] proposed spectral-spatial residual network 

(SSRN) for HSIC. SSRN takes the 3D hyperspectral cube as 

input data without using any dimension reduction method. 

Residual blocks connect each 3D convolutional layer through 

identity mapping, which facilitates the back propagation of 

gradients. Mohan et al. [33] proposed a hybrid CNN model 

consisting of a multi-scale spatiospectral feature based 3D CNN 

and 2D CNN for HSIC. They used the hybrid dimension 

reduction method consisting of nonlinear kernel principal 

component analysis (KPCA) and linear gaussian random 

projection (GRP) to reduce spectral band redundancy and 

provide optimum band extraction. Mohan et al. [34] proposed a 

hybrid CNN architecture consisting of 3D CNN and 2D CNN 

for HSIC. The proposed method uses PCA as the preprocessing 

step. 3D CNN is used to extract spatial-spectral features 

simultaneously. Then 2D CNN is used to extract more spatial 

features. However, the redundancy in its spatial features is 

decreased by octave convolution instead of classic convolution. 

Cao et al. [35] proposed a deep 3D-2D-SSHDR method for 

HSIC that continuously extracts spectral and spatial feature 

information by combining spectral residual blocks, spatial 

hybrid dilated convolutions residual blocks, and outermost skip 

connection. Hamida et al. [36] and Li et al. [21] designed a 3D 

CNN to simultaneously extract spatial-spectral feature 

information for HSI classification. 

 In recent years, there has been an intense development of 

CNN-based methods for HSIC in which spatial features are 

adapted by a 2D CNN method. Nevertheless, since only the 

spatial information in the HSI will be preserved with 2D CNN, 

good distinguishing feature maps cannot be extracted from 

spectral dimensions. That is, if 2D convolution processes are 

implemented to HSIs, important spectral information is lost. By 

using 3D CNN, this problem is overcome. Since spectral and 

spatial features are extracted simultaneously with 3D CNN, the 

structural features of 3D HSIs are fully utilized in this study. 

However, the use of 3D CNN alone is computationally 

complex. Therefore, in the proposed method, 3D CNN and 2D 

CNN are joined to eliminate the shortcomings of 3D CNN and 

2D CNN methods. In this way, maximum classification 

accuracy is achieved by fully utilizing both spatial and spectral 

feature maps. Also, some of the traditional 2D convolution 

layers have been replaced by depthwise separable convolution 

(DSC) layers. The purpose here is to solve the parameter and 

operating costs problem and prevent overfitting. In this study, a 

hybrid method consisting of 3D CNN, 2D CNN and 2D DSC 

layers is proposed. First of all, PCA is applied to the 3D HSI as 

a preprocessing step. Then, 3D hypercube datas are obtained to 

be given to the input of the network by neighborhood 

extraction. Firstly, 3D CNN is applied to extract spatial-spectral 

features simultaneously. Then feature information is converted 

from 3D data to 2D feature map and 2D CNN is applied to 

extract spatial feature. Finally, more spatial features are 

extracted using 2D DSC layers. DSC can improve HSI's feature 

learning capability and decrease computational complexity. 

 The rest of this paper is organized as follows: The datasets 

used in the study with PCA, 3D/2D Convolutional neural 

network, Depthwise separable convolution which constitute the 

theoretical background of the proposed method in this study, 

are explained in Section 2. In addition, the proposed method is 

detailed in Section 2. Application results and discussions about 

results are given in Section 3. This study is summarized in 

Section 4. 

II.  MATERIALS AND METHODS 

A. Principal Component Analysis (PCA) 

PCA is the most commonly used method in dimension 

reduction. With PCA, a significant reduction in the number of 

spectral features is possible while preserving most of the spatial 

features included in the HSI dataset. Significant correlation 

between spectral bands in HSI forms the principal of PCA. 

Analysis with PCA defines the optimal linear combination of 

the original spectral bands that takes into account the change of 

pixel values and also attempts to remove the correlation 

between spectral bands in HSI. The mathematical basic of PCA 

is based on the eigenvalue decomposition of the covariance 

matrix of the HSI spectral bands. Pixels of HSI are adjusted as 
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a vector whose dimension is the same as the number of spectral 

bands. 𝑋𝑖 = [𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑁]𝑇, 𝑁 is the number of HSI 

spectral bands. The mean of all pixel vectors is calculated as in 

Equation (1). 

 

𝑚 =
1

𝑀
∑[𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑁]𝑖

𝑇

𝑀

𝑖=1

 (1) 

 

𝑀 =  𝑝 ∗  𝑞 represents the number of pixel vectors for an HSI 

consisting of "𝑞" columns and "𝑝" rows. The covariance matrix 

is defined as in Equation (2). 

 

𝐶 =
1

𝑀
∑(𝑋𝑖 − 𝑚)(𝑋𝑖 − 𝑚)𝑇

𝑀

𝑖=1

 (2) 

 

The eigen decomposition of the covariance matrix, that is, the 

eigen values together with their corresponding eigen vectors, is 

expressed as in Equation (3). 

 

𝐶 = 𝐴𝐷𝐴𝑇 (3) 

 

D is the diagonal matrix consisting of the eigenvalues 

(𝜆1, 𝜆2, … … , 𝜆𝑁) of C, and 𝐴 = 𝑎1, 𝑎2, 𝑎3, … … , 𝑎𝑁 , is the 

orthogonal matrix with corresponding eigenvectors (each of 

dimension N) as columns [37]. The linear transformation 𝑦𝑖 =
𝐴𝑇𝑋𝑖 , 𝑖 = 1,2, … … , 𝑀 is adapted to obtain changed pixel 

vectors, which are PCA-converted spectral bands of the original 

HSI. The first row K of the 𝐴𝑇 matrix is chosen so that the rows 

are eigenvectors suitable to their eigenvalues arranged in a 

decreasing order. The selected K rows are multiplied by the 

pixel vector 𝑋𝑖 to give PCA spectral bands consisting of most 

of the information included in the HSI spectral bands [38]. 

B. 3D/2D Convolutional Neural Network 

Convolutional neural network (CNN), which is one of the 

deep learning-based methods in HSIC, has been commonly 

used recently. CNN is a deep artificial neural network 

consisting of convolution, pooling, flatten, fully connected and 

softmax layers. The convolution layer is the first layer of CNN 

used to extract features by applying convolution operation to 

the input data. The convolution operation is performed by the 

inner product of the input image matrix and the kernel or a filter 

matrix. In this way, the output (feature map) of the input image 

is formed by shifting the kernel matrix over the input image 

matrix. The pooling layer reduces the width and height of the 

output (feature map) obtained as a result of the convolution 

operation without losing its features. In this way, both the 

required processing power is reduced and the unnecessary 

features that are caught are ignored and more important features 

are focused on. There are two different pooling methods 

generally used in CNN. Maximum and average pooling. In the 

pooling layer, which has a kernel (filter) as in the convolution 

layer, the kernel moves over the input image matrix. But instead 

of the convolutional operation, it applies the determined 

pooling method. In other words, if you are applying max 

pooling, it takes the largest value in the area covered by the 

filter, and if you are applying average pooling, it takes the 

average of the values in the filter. This reduces the spatial 

dimension and retains important features. The flatten layer 

prepares the data at the input of the last and most important 

layer, the fully connected layer. Generally, neural networks take 

input data from a one-dimensional array. The data in this neural 

network is the one-dimensional array of matrices from the 

convolutional and pooling layers. The fully connected layer 

receives the data from the flatten layer and performs the 

learning process through the neural network. Activation 

function used as the last layer for classification in deep learning 

methods is softmax function. As a result of the softmax 

function, the probabilistic distributions of the classes to be used 

in the classification process are generated. The probabilistic 

value generated for each class is in the range of 0 to 1. The total 

probability value of all classes is equal to 1 [33]. For 𝑥 inputs, 

the output of a single neuron is calculated as in Equation (4).  

 

𝑡 = 𝑓(𝑤 ∗ 𝑥 + 𝑏𝑖𝑎𝑠) (4) 

 

In Equation (4), 𝑤 represents the filter weight. 𝑓 (. ) denotes 

nonlinear activation function implemented to a weighted input 

sum. In the 2D CNN method, convolution is performed using 

the 2D kernel before passing the input HSI data through the 

activation function. The convolution performs by calculating 

the sum of the inner product between kernel and the input HSI. 

The kernel moves on on the HSI to cover the entire spatial 

dimension. This convolution operation provides to extract 

spatial features from the HSI. The 2D convolution output of 

each neuron is formulated as in Equation (5). 

 

𝑡𝑚𝑛 = 𝑓 (∑ ∑ ∑ 𝑘𝑖𝑗𝑥(𝑖+𝑚)(𝑗+𝑛)

𝑤−1

𝑗=0

ℎ−1

𝑖=0𝑙

+ 𝑏𝑖𝑎𝑠𝑚𝑛) 

(5) 

 

In Equation (5), 𝑡𝑚𝑛 is the feature extracted at (m,n) position. 

k is the 2D convolution kernel at dimension ℎ ×  𝑤. In the case 

of a 2D image, this convolution operation is applied on all 

feature maps (l) in the receiver area and sums all values for non-

linear activation. This process is repeated for all layers in the 

case of multi-dimensional data. When data are 3D they have 

spatial-spectral dimensions. 2D convolution fails for this input 

data. Because, in traditional 2D CNN, convolution processes 

are applied only to 2D feature maps that capture features in 

spatial dimension. 3D CNN is a changed version of 2D CNN 

methods that apply 3D convolution instead of 2D convolution 

in 2D CNN. When convolution processes are applied to 3D 

data, it is desirable to capture features from both spatial and 

spectral dimensions. For this purpose, 3D CNN is used, in 

which 3D convolution processes are implemented to 3D 

hypercubes to calculate co-spatial spectral features from 3D 

input data. 3D convolution enables the extraction of spatial-

spectral features from 3D images. The feature extracted from 

the 3D CNN method is formulated as in Equation (6). 
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𝑡𝑚𝑛𝑑 = 𝑓 (∑ ∑ ∑ ∑ 𝑘𝑖𝑗𝑟𝑥(𝑖+𝑚)(𝑗+𝑛)(𝑟+𝑑)

𝑏−1

𝑟=0

𝑤−1

𝑗=0

ℎ−1

𝑖=0𝑙

+ 𝑏𝑖𝑎𝑠𝑚𝑛𝑑) 

(6) 

In Equation (6), 𝑡𝑚𝑛𝑑 is the feature extracted at (m,n,d) 

position.  𝑏 is the dimension of the 3D kernel along the spectral 

dimension. The kernel (𝑘) is 3D and the features are calculated 

by applying 3D convolution on the 3D input data. In traditional 

2D CNNs, the convolution process to obtain 2D feature maps is 

applied only on spatial dimensions and covers all feature maps 

of the previous layer. However, for HSIC, it is desirable to 

obtain spectral features information as well as spatial features. 

2D CNNs cannot extract spectral features. 3D CNN kernel can 

simultaneously extract spatial-spectral feature information 

from HSI despite increasing computational complexity. To 

benefit advantage of the automatic feature learning of both 3D 

CNN and 2D CNN, a hybrid CNN method consisting of 3D and 

2D CNN is used under the HSIC. 

C. Depthwise Separable Convolution 

HSIs are different from 2D images and include a lot of 

information in the spatial dimension. Spatial features are 

determined by the excess information contained in the spatial 

dimension of HSIs. These spatial features can compensate for 

the shortcomings of spectral features to improve the model's 

ability to capture features. Spatial features of HSIs can be 

extracted with 2D CNN. However, since HSIs are 3D, they are 

not suitable for simultaneous extraction of spatial-spectral 

features with 2D CNN. Considering of the inadequate use of 

hyperspectral data information by 2D convolution, a DSC layer 

is added after the 2D convolution layer, which can increase 

spatial features and decrease parameters. With the addition of 

the DSC layer, a lot of spatial-spectral features are extracted to 

enable the method to losslessly distinguish spatial information 

of different spectral bands [39]. 

DSC consists of two separate operations, namely, depthwise 

convolution (DC) and pointwise convolution (PC) (1x1 

convolution or also known as point-by-point convolution). As 

shown in Fig. 1, a separate convolution operation is performed 

on each channel of the input image in DC. With DC convolution 

operation, spatial features are extracted on each dimensions. In 

PC convolution operation, 1x1 standard convolution is applied 

to the depthwise feature map obtained as a result of DC 

convolution. PC convolution is used to assemble the feature 

map across channels [40]. 

Fig. 1a shows the standard convolution operation and Fig. 1b 

shows the DSC. In Figure 1, the size of the 3D input image is 

WxHxC. W is the width of the input image, H is the height of 

the input image, and C is the number of depth/channel. Suppose 

the size of the convolution kernel is KxKxC and the number of 

convolution kernels is N. The input image is convoluted with 

each convolution kernel and a feature map (output) of size 

WxHxN is obtained. The computational cost of the standard 

convolution operation is as in Equation (7). 

𝑐𝑜𝑠𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑡_𝑐𝑜𝑛𝑣 = 𝐾𝑥𝐾𝑥𝐶𝑥𝑁𝑥𝑊𝑥𝐻 (7) 

 

The DSC implements a single channel filtering operation for 

each input channel, added after the DC filtering, and then 

performs PC. In DCS, in order to apply DC to the input image 

of size WxHxC first, it is divided into C groups with 

convolution kernel size KxKx1. Each group then performs 

standart convolution, which is equivalent to extracting the 

spatial features of each input channel C, ie Depthwise feature. 

The output size obtained after this operation is WxHxC. In PC, 

on the other hand, 1x1xC convolution kernels are used. In other 

words, 1x1xC convolution operation with N number of 

convolution kernels is applied to the output feature map 

obtained at the end of DC. The size of the output feature map 

after DC and PC is WxHxN. Equations (8) and (9) give the 

computational costs of DC and PC, respectively. 

 

𝑐𝑜𝑠𝑡𝐷𝐶𝑐𝑜𝑛𝑣 = 𝐾𝑥𝐾𝑥𝑊𝑥𝐻𝑥𝐶 

 

(8) 

𝑐𝑜𝑠𝑡𝑃𝐶𝑐𝑜𝑛𝑣 = 𝐶𝑥𝑊𝑥𝐻𝑥𝑁 

 

(9) 

The calculation required to compare the DSC with the standard 

convolution is given in Equation (10). 

 
𝑐𝑜𝑠𝑡𝐷𝐶𝑐𝑜𝑛𝑣 + 𝑐𝑜𝑠𝑡𝑃𝐶𝑐𝑜𝑛𝑣

𝑐𝑜𝑠𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑡_𝑐𝑜𝑛𝑣

=
1

𝐾2 +
1

𝑁
 

 

(10) 

Considering Equation (10), it can be seen that the trainable 

parameters and calculations of the DSC are 
1

𝐾2 +
1

𝑁
 times of the 

standard convolution. With the use of DSC, the number of 

trainable parameters and the computational cost are 

significantly reduced. 

D. Information of HSI Datasets 

Three HSI datasets including Indian Pines, Pavia of 

University and Salinas datasets were used to evaluate the 

performance of the proposed method and state-of-the-art 

techniques. Indian Pines (IP), Pavia of University (PU) and 

Salinas (SA) datasets are taken from the website 

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remot

e_Sensing_Scenes.  

The IP is data obtained by the Airborne Visible / Infrared 

Imaging Spectrometer (AVIRIS) sensor at the Indian Pines test 

site in North-western Indiana. Each spectral image in this 

dataset is 145 × 145 spatial dimension. The sensor achieved a 

total of 224 spectral bands in the 0.4-2.5 micrometers 

wavelength range. From these 224 bands, 24 bands that are in 

the water absorption region and not useful were removed. A 

total of 200 spectral bands are used in applications. The IP 

includes 16 classes and 10,249 samples. The PU is data 

obtained by Reflective Optics System Imaging Spectrometer 

(ROSIS) optical sensors over the Pavia University in northern 

Italy. PU is 340 pixels width and 610 pixels height, with a 

spatial resolution of 1.3 meters per pixel. The dataset has a 115 

wavelength ranging from 0.43-0.86 micrometer. After 

removing 12 noise bands in applications, a total of 103 spectral 

bands are used. The PU includes 9 classes and 42,776 samples. 

The SA is data collected by the AVIRIS sensor over Salinas 

Valley region of California. SA has a spatial resolution of 3.7 

meters per pixel. The dataset is a remote sensing image 217 
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pixels width and 512 pixels height and contains 224 spectral 

bands. From these 224 bands, 20 bands that are in the water 

absorption region and not useful were removed. A total of 204 

spectral bands are used in applications. The SA includes a total 

of 16 classes and 54,129 samples. The class and sample number 

information of the datasets are given in Table I, while the false-

color images are shown in Fig. 2.

 
Fig. 1. (a) Standart convolution operation. (b) Depthwise separable convolution operation 

 

 

 
(a) 

(b) (c) 
Fig. 2. False-color images of (a) Indian Pines, (b) University of Pavia, (c) Salinas datasets 

 

TABLE I 
INFORMATION REGARDING SAMPLES OF EACH CLASS IN IP, PU, AND SA DATASETS 

No 
                      Indian Pines (IP)                              Salinas (SA)             Pavia University (PU) 

Classes Samples Classes Samples Classes Samples 

1 Alfalfa 46 Brocoli_green_weeds_1 2009 Asphalt 6631 

2 Corn-notill 1428 Brocoli_green_weeds_2 3726 Meadows 18,649 

3 Corn-mintill 830 Fallow 1976 Gravel 2099 

4 Corn 237 Fallow_rough_plow 1394 Trees 3064 
5 Grass-pasture 483 Fallow_smooth 2678 Painted metal sheets 1345 

6 Grass-trees 730 Stubble 3959 Bare soil 5029 
7 Grass-pasture-mowed 28 Celery 3579 Bitumen 1330 

8 Hay-windrowed 478 Grapes_untrained 11,271 Self-blocking Bricks 3682 

9 Oats 20 Soil_vinyard_develop 6203 Shadows 947 
10 Soybean-notill 972 Corn_senesced_green_weeds 3278   

11 Soybean-mintill 2455 Lettuce_romaine_4wk 1068   

12 Soybean-clean 593 Lettuce_romaine_5wk 1927   

13 Wheat 205 Lettuce_romaine_6wk 916   

14 Woods 1265 Lettuce_romaine_7wk 1070   

15 Buildings-grass-trees-drives 386 Vinyard_untrained 7268   

16 Stone-steel-towers 93 Vinyard_vertical_trellis 1807   

Total Number 10,249  54,129  42,776 
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E. Our Proposed Method 

HSI 𝑋 is specified as a 3D data cube with two spatial and one 

spectral dimensions of size 𝑀𝑥𝑁𝑥𝐷. 𝑋 is the original input. 

While 𝐷 indicates the number of spectral bands, 𝑀 and 𝑁 are 

the spatial width and height of the HSI. The ground truth of the 

input image 𝑌 is converted using one-hot encoding and 

expressed as 𝑌 = (𝑦1 , 𝑦2, … … , 𝑦𝐶). C indicates the number of 

classes in the HSI. HSI pixels exhibit high inter-class similarity, 

high intra-class variability, overlapping and nested regions, 

which require extensive effort for any classification method. To 

overcome these problems, it is necessary to remove the spectral 

band redundancy. As a preprocessing step to remove spectral 

band redundancy, conventional principal component analysis 

(PCA) is first applied to the original HSI (𝑋) data along the 

spectral bands. With PCA, the number of spectral bands is 

reduced from 𝐷 to 𝐵 while maintaining the same spatial 

dimensions (i.e., width 𝑀 and height 𝑁). That is, using PCA, 

the spatial feature information, which is very important for 

recognizing any class, is preserved, while only the number of 

spectral bands is reduced. Thus, it is reduced to the desired 

number of bands. After the PCA, the modified input image 𝑋 is 

represent as 𝑀𝑥𝑁𝑥𝐵. 𝑀 is the width, 𝑁 is the height, and 𝐵 is 

the number of newly obtained spectral bands. In the second 

stage, to use HSIC techniques, the HSI cube is split into small 

overlapping 3D spatial patches from which real labels based on 

the central pixel are generated. 3D neighboring patches 𝑆𝑥𝑆𝑥𝐵 

is created from the HSI cube (𝑋) centered in the spatial position 

(𝑎, 𝑏) and covering the 𝑆𝑥𝑆 window size or spatial dimension 

and all spectral bands 𝐵. The total number of 3D patches (𝑛) 

produced from the HSI cube (𝑋) is found by (𝑀 − 𝑆 +
 1) 𝑥 (𝑁 − 𝑆 +  1). Thus, these patches at location (𝑎, 𝑏), 

covers the width from 𝑎 − (𝑆 − 1)/2 to 𝑎 + (𝑆 − 1)/2, height 

from 𝑏 − (𝑆 − 1)/2 to 𝑏 + (𝑆 − 1)/2, and all spectral bands 

(𝐵) of  HSI cube (𝑋) [27][28]. The generated 3D HSI data 

cubes is given to the input of the Hybrid 3D/2D CNN 

architecture for feature extraction and classification. 

The proposed Hybrid 3D/2D CNN consists of 3 3D CNNs, 2 

2D CNNs, 1 Separable Conv layers (DC + PC layers), 

flattening, 2 Fully connected (FC), dropout and softmax layers. 

To preserve the maximum spatial-spectral information, the 

pooling layer in CNN is not to be used. The 3D convolution 

process is applied three times to simultaneously increase the 

number of spatial-spectral feature maps and can protect the 

spectral information of the input HSI data in the output volume. 

Dimensions of the applied 3D convolution kernels and the 

filters used are as follows. In the first convolutional layer, 32 

filters with the dimension of 3x3x7 (ie, two spatial and one 

spectral dimensions), 64 filters with the dimension of 3x3x3 in 

the 2nd convolution layer, 64 filters with the dimension of 

1x1x1 in the 3rd convolution layer are used. 2D convolution is 

applied twice before the flattened layer, bearing in mind that it 

strongly discriminates spatial information in different spectral 

bands without significant loss of spectral information, which is 

crucial for HSI data. The dimensions of the 2D convolution 

kernels and the filters used are as follows. 128 filters with the 

dimension of 3x3 in the 1st convolution layer and 128 filters 

with the dimension of 1x1 in the 2nd convolutional layer are 

used. Similarly, 2D DSC layers containing depthwise and 

pointwise convolution layers before the flattening layer are 

applied. The dimensions of the 2D DSC layer kernels and the 

filters used are as follows. 128 filters with the dimension of 3x3 

in the DSC layer are used. Since 𝑓(. ) ReLU is the most 

frequently used activation function in CNN, it is used in all 

convolution layers. ReLU is faster than other activation 

functions when using gradient descent techniques for training. 

ReLU is formulated as in Equation (11). 

𝑅𝑒𝐿𝑈(𝑡) = 𝑚𝑎𝑥(0, 𝑡) (11) 

The features extracted after the 3D and 2D convolution layers 

are flattened and given as input to the FC layers for 

classification. In proposed method, two FC layers with 256 and 

128 neurons are used. To prevent overfitting, a dropout layer 

with a dropout rate of 0,4% is implemented after each FC layer. 

The output of the FC layer is given to the simple softmax 

classifier to produce the classification result. Softmax is another 

activation function often used in the last layer of a deep learning 

method for classification. This activation function produces the 

probability distribution of all samples and their sum equals one. 

More details on the proposed method are shown in Table II. The 

total number of trainable weight parameters in the proposed 

method for PU dataset is 1,465,481. 

 
TABLE II 

SUMMARY OF THE PROPOSED METHOD FOR PU 

Layer(Type) Output Shape Parameters 

Input (InputLayer) (11, 11, 15, 1) 0 

Conv3d (9, 9, 9, 32) 2048 

Conv3d_1 (7, 7, 7, 64) 55360 

Conv3d_2 (7, 7, 7, 64) 4160 

Reshape (7, 7, 448) 0 

Conv2d (5, 5, 128) 516224 

Separable_conv2d (5, 5, 128) 17664 

Conv2d_1 (5, 5, 128) 16512 

Flatten 3200 0 

Dense 256 819456 

Dropout 256 0 

Dense_1 128 32896 

Dropout_1 128 0 

Dense_2 9 1161 

Total Trainable Parameters 1,465,481 

 

III. APPLICATION RESULTS AND DISCUSSIONS 

All applications are performed using Colaboratory (Colab) 

Notebook. Colab is an online platform offered by Google that 

provides free access to the Graphical Processing Unit (GPU) 

and Tensor Processing Units (TPU) as hardware accelerators. 

Google Colab needs a good internet speed while running on any 

hardware accelerator. It is preferred to use the TPU as a 

hardware accelerator while running our applications. The TPU 

offers the ability to run code on a Python 3 desktop computer 

with 35 GB of RAM and 107.77 GB of storage for data 

computing. In all applications, categorical crossentropy with 

0.001 learning rate and Adam optimizer with 1e-06 decay 

function used for optimization is used. The training process 

repeats for 256 batch sizes and 100 epochs. ReLU is used as 

activation function in all layers except the Softmax layer. The 

proportion of training samples and the size of the input are 

factors that affect the accuracies of the HSIC. All three datasets 

use 11 × 11 neighborhoods (window size) for convolution. 

Training sample rates of IP, PU and SA datasets are taken as 
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20%, 10% and 10%, respectively. On the other hand, in our 

applications, 30, 15 and 15 principal components are used for 

IP, PU and SA datasets, respectively. In order to make a better 

comparison with other deep learning-based methods, the PC 

values were chosen in this way. That is, dimension of the 3D 

patches obtained as a result of neighborhood extraction was set 

to 11 × 11 × 30 for IP, 11 × 11 × 15 for PU and SA datasets, 

respectively. Overall accuracy (OA), Average accuracy (AA) 

and Kappa statistics (K) have used to evaluate the classification 

results of each method. OA is computed by the ratio between 

correctly classified samples in the test samples and the total 

number of test samples (Eq. (12)). AA is the average value of 

the accuracy of each class (Eq. (13)). K is a statistical 

measurement metric that provides mutual information 

regarding a strong agreement between the basic truth map and 

the classification map (Eq. (14)). The advantage of using the 

Kappa value is to consider the effect of uncertainties on 

classification accuracy when predicting classification accuracy. 

𝑂𝐴 = ∑ 𝑀𝑖𝑖

𝐾

𝑖=1

/𝑁 (12) 

𝐴𝐴 = ∑ (𝑀𝑖𝑖 ∑ 𝑀𝑖𝑗

𝐾

𝑗=1

⁄ )

𝐾

𝑖=1

𝐾⁄  (13) 

𝐾𝑎𝑝𝑝𝑎

= (𝑁 ∑ 𝑀𝑖𝑖

𝐾

𝑖=1

− ∑(𝑀𝑖+ 𝑥 𝑀+𝑖)

𝐾

𝑖=1

) (𝑁2 − ∑(𝑀𝑖+ 𝑥 𝑀+𝑖)

𝐾

𝑖=1

)⁄  

 

(14) 

 

 

 

 

 
Fig. 3. Proposed hybrid 3D/2D CNN method for HSIC 
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In Equations (12), (13) and (14), K is the number of classes used 

for HSIC. M represents the confusion matrix. The confusion 

matrix is created by comparing the predicted classification map 

with ground truth that is actual value. 𝑀𝑖𝑖 shows the main 

diagonal values of the confusion matrix and is the number of 

correctly classified samples belonging to class i. N is the total 

number of test samples. 𝑀𝑖+ indicates the total number of 

samples in row i, while 𝑀+𝑖 indicates the total number of 

samples in column i. 

The proposed method (PM) has been compared with HSIC 

methods based on deep learning from the literature, such as 

SVM-RBF [41], 2D CNN [42], 3D CNN [21], SSRN [32], and 

HybridSN[27]. 

In the first application, IP dataset is used. Classification 

accuracy of each class according to class-based and OA, AA 

and K evaluation metrics is shown in Table III. Ground truth 

and the classification maps obtained as a result of the 

applications performed with the IP dataset are given in Fig. 4. 

When Table III is examined, it is seen that the proposed method 

obtained the best classification result with 99.32%, 99.46% and 

99.22%, respectively, according to the OA, AA and K 

evaluation metrics. The closest results to the proposed method 

were obtained with SSRN with 99.19% OA, 98.93% AA, and 

99.07% K values, HybridSN with 99.26% OA, 98.98% AA, and 

99.09% K. Among the other classification methods, the lowest 

OA, AA and K values were obtained in SVM-RBF with 

82.83%, 80.84% and 82.23%, respectively. Considering the AA 

value in SVM-RBF, it is seen that the number of correct 

classifications for each class is lower than other methods. With 

the proposed method in class-based classification, the best 

classification accuracies of 100% are obtained in all classes 

except for the 2nd, 3rd, 5th, 10th, 11th, 12th and 16th classes. 

The best classification accuracy for class 2 was obtained in the 

SSRN method with a difference of 0.57% from the proposed 

method. The best classification accuracy for class 3 was 

obtained in the SSRN method with a difference of 1.79% from 

the proposed method. Similarly, the best classification accuracy 

was obtained in SSRN with 99.24% for class 5, HybridSN with 

98.76% for class 10, PM with 99.75% for class 11, HybridSN 

with 99.12% for class 12, and PM with 98.65% for class 16. 

TABLE III 

NUMBER OF TRAINING AND TEST SAMPLES OF IP DATASET AND CLASSICATION ACCURACIES (%) 

No. of classes Train/Test SVM-RBF 2D CNN 3D CNN SSRN HybridSN PM 

1 9/37 61.5 85.88 94.63 97.82 97.98 100 

2 286/1142 78.68 91.31 93.9 99.17 98.37 98.6 

3 166/664 73.41 91.07 94.85 99.53 99.48 97.74 

4 47/190 71.58 80.38 93.48 97.79 97.38 100 

5 97/386 80.38 91.89 93.56 99.24 99.23 98.96 

6 146/584 92.27 99.01 94.2 99.51 99.14 100 

7 6/22 79.52 82.59 89.73 98.7 99 100 

8 96/382 87.38 100 96.01 99.85 100 100 

9 4/16 85.87 66.55 95 98.5 99.01 100 

10 194/778 77.58 86.38 94.55 98.74 98.76 98.71 

11 491/1964 83.75 90.47 93.87 99.3 99.64 99.75 

12 119/474 83.21 82.89 91.52 98.43 99.12 98.95 

13 41/164 84.64 99.06 93.89 100 100 100 

14 253/1012 98.01 97.86 91.77 99.31 100 100 

15 77/309 94.3 90.52 95.03 99.2 99.35 100 

16 19/74 61.43 98.94 93.57 97.82 97.26 98.65 

OA (%)  82.83 90.89 94.07 99.19 99.26 99.32 

AA (%)  80.84 89.68 93.72 98.93 98.98 99.46 

Kappa x 100  82.23 88.56 93.87 99.07 99.09 99.22 

 

The second application is performed with the PU dataset. The 

classification accuracies obtained as a result of the applications 

performed with the PU dataset are given in Table IV. The 

classification maps obtained as a result of the classification are 

shown in Fig. 5. When Table IV is examined, it is seen that the 

proposed method obtained the best classification result with 

99.83%, 99.70% and 99.78%, respectively, according to the 

OA, AA and K evaluation metrics. The proposed method 

obtained 0.11%, 0.1%, 0.14% better results in terms of OA, AA 

and K values, respectively, than HybridSN, which is one of the 

most advanced methods. In addition, the proposed method 

obtained 0.21%, 0.21% and 0.28% better results in terms of OA, 

AA and K values, respectively, compared to SSRN, which is 

another of the most advanced methods. The lowest 

classification results are obtained in the SVM-RBF method 

with 82.67% OA, 80.84% AA and 81.21% K values. 

Classification accuracies of 96.89% OA, 95.79% AA, 2D CNN 

with 96.56% K and 3D CNN with 99.07% OA, 98.75% AA, 

98.87% K were obtained, respectively. When class-based 

classification accuracies are compared, the proposed method 

has the best classification performance with 100% in the 5th, 

6th and 9th classes. In addition, it is seen that the best 

classification results are obtained with 99.95% in class 1, 

99.98% in class 2, 99.53% in class 4 and 99.46% in class 8. The 

best classification results are obtained in the HybridSN method, 

with 99.01% in class 3 and 99.69% in class 7. Considering all 

classification accuracies, it is seen that the classification map 

obtained by the proposed method is quite close to the ground 

truth.
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(a) (b) (c)                 (d) 

(e) (f) (g)                 (h) 

 
Fig. 4. Classification maps obtained as a result of predicted for IP. (a) False-color image, (b) ground truth, (c) SVM-RBF, (d) 2D CNN,  (e) 3D CNN, (f) SSRN, 

(g) HybridSN, and (h) Proposed method 

 
TABLE IV 

 NUMBER OF TRAINING AND TEST SAMPLES OF PU DATASET AND CLASSICATION ACCURACIES (%) 

No. of classes Train/Test SVM-RBF 2D CNN 3D CNN SSRN HybridSN PM 

1 663/5968 93.68 97.37 97.4 99.75 99.76 99.95 

2 1865/16784 97.02 99.26 94.73 99.79 99.78 99.98 

3 210/1889 82.41 80.73 95.05 98.29 99.01 98.94 

4 306/2758 96.51 95.54 98.04 99.52 99.53 99.53 

5 135/1211 98.38 99.75 99.01 99.82 99.87 100 

6 503/4526 90.01 93.14 98.62 99.77 99.77 100 

7 133/1197 85.92 91.65 97.02 99.65 99.69 99.42 

8 368/3314 88.08 92.39 98.23 99.05 99.21 99.46 

9 95/852 99.85 99.09 99.29 99.78 99.80 100 

OA (%)  82.67 96.89 99.07 99.62 99.72 99.83 

AA (%)  80.84 95.79 98.75 99.49 99.60 99.70 

Kappa x 100  81.21 96.56 98.87 99.50 99.64 99.78 

(a) (b) (c) (d)        (e) 

(f) (g) (h) 

 
 

Fig. 5. Classification maps obtained as a result of predicted for PU. (a) False-color image, (b) ground truth, (c) SVM-RBF, (d) 2D CNN,  (e) 3D CNN, (f) SSRN, 

(g) HybridSN, and (h) Proposed method 

43

http://dergipark.gov.tr/bajece


BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 10, No. 1, January 2022                                               

  

 

Copyright © BAJECE                                                                ISSN: 2147-284X                                                     http://dergipark.gov.tr/bajece        

The third application is performed with the SA dataset. The 

classification accuracies obtained as a result of the applications 

performed with the SA dataset are given in Table V. The 

classification maps obtained as a result of the classification are 

shown in Fig. 6. When Table V is examined, the best 

classification accuracies were obtained with 99.90% OA, 

99.93% AA and 99.89 K values in the proposed method. The 

closest results to the proposed method were obtained in the 

HybridSN method with 99.80% and SSRN method with 

99.64% OA, 98.76% AA, 99.60% K values in all evaluation 

metrics. The proposed method achieved better classification 

accuracy of 7.23% OA, 8.32% AA and 7.68% K, respectively, 

from SVM-RBF, 4.56% OA, 5.18% AA and 4.96% K from 2D 

CNN, and 5.88% OA, 6.44% AA and 6.32% K from 3D CNN. 

When the class-based classification results were examined, the 

proposed method achieved the best classification accuracy with 

100% in the 1st, 2nd, 3rd, 6th, 7th, 9th, 11th, 12th, 13th, 16th 

classes. The best classification results were obtained in the 

HybridSN method with 100% for the 4th, 5th, 8th, 10th and 

14th classes. The proposed method with 99.63% for class 15 

gives the best results. Considering Table V and Figure 6, the 

classification maps obtained by the proposed method and 

HybridSN methods are very similar to the ground truth. 

 

 

 

 

 

TABLE V 

NUMBER OF TRAINING AND TEST SAMPLES OF SA DATASET AND CLASSICATION ACCURACIES (%) 

No. of classes Train/Test SVM-RBF 2D CNN 3D CNN SSRN HybridSN PM 

1 201/1808 92.56 95.51 95.19 99.78 100 100 

2 373/3353 94.78 95.87 96.12 99.78 100 100 

3 198/1778 94.22 95.64 95.89 99.78 100 100 

4 139/1255 97.36 99.99 97.18 99.99 100 99.76 

5 268/2410 93.38 94.51 94.70 99.78 100 99.92 

6 396/3563 95.36 96.71 95.63 99.78 100 100 

7 358/3221 95.79 95.51 95.36 99.78 100 100 

8 1127/10144 80.21 86.93 86.33 99.78 100 99.85 

9 620/5583 97.67 97.42 97.19 99.78 100 100 

10 328/2950 88.99 90.93 90.94 92.69 100 99.90 

11 107/961 90.20 94.24 90.20 90.68 98.24 100 

12 193/1734 96.42 99.91 96.24 99.95 99.61 100 

13 92/824 95.53 95.53 95.31 99.85 99.59 100 

14 107/963 91.26 92.97 94.18 99.88 100 99.90 

15 727/6541 72.67 90.93 81.39 99.12 99.32 99.63 

16 181/1626 89.37 93.43 94.09 99.78 100 100 

OA (%)  92.67 95.34 94.02 99.64 99.80 99.90 

AA (%)  91.61 94.75 93.49 98.76 99.80 99.93 
Kappa x 100  92.21 94.93 93.57 99.60 99.80 99.89 

 

(a) (b) (c) (d) (e) (f) 

(g) (h) 
 

Fig. 6. Classification maps obtained as a result of predicted for SA. (a) False-color image, (b) ground truth, (c) SVM-RBF, (d) 2D CNN,  (e) 3D CNN, (f) SSRN, 

(g) HybridSN, and (h) Proposed method 
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IV. CONCLUSION 

In this study, a hybrid depthwise separable CNN method for 

HSIC is proposed. The method combines 3D/2D CNN and 

spatially depthwise separable convolution layers. While spatial-

spectral features are extracted with 3D CNN, spatial features 

are continuously extracted using 2D CNN. With depthwise 

separable convolution, the number of trainable parameters and 

computation time are reduced and more spatial features are 

extracted. Considering the applications performed with IP, PU 

and SA benchmark datasets, with the proposed method, 99.32% 

OA, 99.46% AA, 99.22% K in IP, 99.83% OA, 99.70% AA, 

99.78% K in PU, 99.90% OA, 99.93% AA, 99.89% K values in 

SA were obtained. In line with all these values, the proposed 

method was compared with SVM-RBF, 2D CNN, 3D CNN, 

SSRN, HybridSN methods. When Table III-IV-V is examined, 

it is seen that better classification performance is achieved with 

the proposed method. In future studies, Dilated convolution, 

which is another convolution method, will be examined first to 

solve the HSIC problem. Later, applications will be developed 

on how it affects HSIC performance when used with depthwise 

separable convolution. 

REFERENCES 

[1] H. Gao, Y. Yang, C. Li, L. Gao, and B. Zhang, “Multiscale Residual 
Network with Mixed Depthwise Convolution for Hyperspectral 

Image Classification,” IEEE Transactions on Geoscience and Remote 

Sensing, vol. 59, no. 4, pp. 3396–3408, 2021, doi: 
10.1109/TGRS.2020.3008286. 

[2] H. Fırat and D. Hanbay, “4CF-Net: Hiperspektral uzaktan algılama 

görüntülerinin spektral uzamsal sınıflandırılması için yeni 3B 
evrişimli sinir ağı,” Gazi Üniversitesi Mühendislik-Mimarlık 

Fakültesi Dergisi, vol. 1, pp. 439–453, 2021, doi: 

10.17341/gazimmfd.901291. 
[3] H. Firat, M. Uçan, and D. Hanbay, “Classification of Hyperspectral 

Remote Sensing Images Using Hybrid 3D-2D CNN Architecture,” 

Journal of Computer Science, vol. IDAP-2021, no. Special, pp. 132–
140, 2021. 

[4] Y. Wang, W. Yu, and Z. Fang, “Multiple Kernel-based SVM 

classification of hyperspectral images by combining spectral, spatial, 
and semantic information,” Remote Sensing, vol. 12, no. 1, 2020, doi: 

10.3390/RS12010120. 

[5] M. Ahmad et al., “Spatial prior fuzziness pool-based interactive 
classification of hyperspectral images,” Remote Sensing, vol. 11, no. 

9, pp. 1–19, 2019, doi: 10.3390/rs11091136. 

[6] A. Alcolea, M. E. Paoletti, J. M. Haut, J. Resano, and A. Plaza, 
“Inference in supervised spectral classifiers for on-board 

hyperspectral imaging: An overview,” Remote Sensing, vol. 12, no. 

3, pp. 1–29, 2020, doi: 10.3390/rs12030534. 
[7] J. S. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, “Investigation of 

the random forest framework for classification of hyperspectral data,” 

IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 
3, pp. 492–501, 2005, doi: 10.1109/TGRS.2004.842481. 

[8] S. Ghaderizadeh, D. Abbasi-Moghadam, A. Sharifi, N. Zhao, and A. 

Tariq, “Hyperspectral Image Classification Using a Hybrid 3D-2D 
Convolutional Neural Networks,” IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, vol. 14, pp. 7570–
7588, 2021, doi: 10.1109/JSTARS.2021.3099118. 

[9] M. F. Özdemir and D. Hanbay, “Comparison of Optimization 

Algorithms for Multi-Object Tracking FairMOT Algorithm,” Journal 
of Computer Science, vol. IDAP-2021, no. Special, pp. 147–153, 

2021. 

[10] İ. Sel and D. Hanbay, “Creating a Parallel Corpora for Turkish-

English Academic Translations,” Journal of Computer Science, vol. 

IDAP-2021, no. Special, pp. 335–340, 2021. 

[11] G. MENDİ and C. BUDAK, “Automatic Cell Nucleus Segmentation 
Using Superpixels and Clustering Methods in Histopathological 

Images,” Balkan Journal of Electrical and Computer Engineering, 

vol. 9, no. 3, pp. 304–309, 2021, doi: 10.17694/bajece.864266. 
[12] C. Budak, V. Mençik, and V. Gider, “Determining similarities of 

COVID-19 – lung cancer drugs and affinity binding mode analysis 

by graph neural network-based GEFA method,” Journal of 
Biomolecular Structure and Dynamics, vol. 0, no. 0, pp. 1–13, 2021, 

doi: 10.1080/07391102.2021.2010601. 

[13] H. Üzen, H. Fırat, A. Karcİ, and D. Hanbay, “Automatic 
Thresholding Method Developed With Entropy For Fabric Defect 

Detection,” in 2019 International Artificial Intelligence and Data 

Processing Symposium (IDAP), 2019, pp. 14–17. 
[14] H. Uzen, M. Turkoglu, and D. Hanbay, “Texture defect classification 

with multiple pooling and filter ensemble based on deep neural 

network,” Expert Systems with Applications, vol. 175, no. March, p. 
114838, 2021, doi: 10.1016/j.eswa.2021.114838. 

[15] C. Zhao, X. Wan, G. Zhao, B. Cui, W. Liu, and B. Qi, “Spectral-

Spatial Classification of Hyperspectral Imagery Based on Stacked 
Sparse Autoencoder and Random Forest,” European Journal of 

Remote Sensing, vol. 50, no. 1, pp. 47–63, 2017, doi: 

10.1080/22797254.2017.1274566. 
[16] H. Data et al., “Deep Learning-Based Classi fi cation of 

Hyperspectral Data,” IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2094–

2107, 2014, doi: 10.1109/JSTARS.2014.2329330. 

[17] A. Mughees and L. Tao, “Efficient deep auto-encoder learning for the 
classification of hyperspectral images,” Proc. - 2016 Int. Conf. 

Virtual Real. Vis. ICVRV 2016, no. September, pp. 44–51, 2017, doi: 

10.1109/ICVRV.2016.16. 
[18] P. Zhong, Z. Gong, S. Li, and C. B. Schonlieb, “Learning to Diversify 

Deep Belief Networks for Hyperspectral Image Classification,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 55, no. 6, pp. 
3516–3530, 2017, doi: 10.1109/TGRS.2017.2675902. 

[19] Y. Chen, X. Zhao, and X. Jia, “Spectral-Spatial Classification of 

Hyperspectral Data Based on Deep Belief Network,” IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote Sensing, 

vol. 8, no. 6, pp. 2381–2392, 2015, doi: 

10.1109/JSTARS.2015.2388577. 
[20] J. Li, B. Xi, Y. Li, Q. Du, and K. Wang, “Hyperspectral classification 

based on texture feature enhancement and deep belief networks,” 

Remote Sensing, vol. 10, no. 3, 2018, doi: 10.3390/rs10030396. 
[21] Y. Li, H. Zhang, and Q. Shen, “Spectral-spatial classification of 

hyperspectral imagery with 3D convolutional neural network,” 

Remote Sensing, vol. 9, no. 1, 2017, doi: 10.3390/rs9010067. 
[22] C. BUDAK, V. MENÇİK, and M. E. ASKER, “Effect on model 

performance of regularization methods,” DÜMF Mühendislik 

Dergisi, vol. 5, pp. 757–765, 2021, doi: 10.24012/dumf.1051352. 
[23] H. S. Nogay, T. C. Akinci, and M. Yilmaz, “Detection of invisible 

cracks in ceramic materials using by pre-trained deep convolutional 

neural network,” Neural Computings and Applications, vol. 
0123456789, 2021, doi: 10.1007/s00521-021-06652-w. 

[24] C. Zhang et al., “Joint Deep Learning for land cover and land use 

classification,” Remote Sensing of Environment, vol. 221, no. May 
2018, pp. 173–187, 2019, doi: 10.1016/j.rse.2018.11.014. 

[25] H. Firat, M. E. Asker, and D. Hanbay, “Classification of 

hyperspectral remote sensing images using different dimension 

reduction methods with 3D/2D CNN,” Remote Sensing Applications: 

Society and Environment, p. 100694, 2022, doi: 

10.1016/j.rsase.2022.100694. 
[26] P. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, “Deep feature 

extraction and classification of hyperspectral images based on 

convolutional neural networks,” IEEE Transactions on Geoscience 
and Remote Sensing, vol. 54, no. 10, pp. 6232–6251, 2016, doi: 

10.1049/iet-ipr.2019.1282. 

[27] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, 
“HybridSN: Exploring 3D-2D CNN Feature Hierarchy for 

Hyperspectral Image Classification,” arXiv, vol. 17, no. 2, pp. 277–

281, 2019. 
[28] M. Ahmad, A. M. Khan, M. Mazzara, S. Distefano, M. Ali, and M. 

S. Sarfraz, “A Fast and Compact 3-D CNN for Hyperspectral Image 

Classification,” IEEE Geoscience and Remote Sensing Letters, no. 
April, pp. 1–5, 2020, doi: 10.1109/LGRS.2020.3043710. 

[29] Z. Ge, G. Cao, X. Li, and P. Fu, “Hyperspectral Image Classification 

45

http://dergipark.gov.tr/bajece


BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,  Vol. 10, No. 1, January 2022    

Copyright © BAJECE  ISSN: 2147-284X  http://dergipark.gov.tr/bajece 

Method Based on 2D-3D CNN and Multibranch Feature Fusion,” 

IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, vol. 13, pp. 5776–5788, 2020, doi: 
10.1109/JSTARS.2020.3024841. 

[30] H. C. Mingyi He, Bo Li, “Multi-scale 3D deep convolutional neural 

network for hyperspectral image classification,” 2017 IEEE
International Conference on Image Processing (ICIP), pp. 3904–

3908, 2017. 

[31] C. Mu, Z. Guo, and Y. Liu, “A multi-scale and multi-level spectral-
spatial feature fusion network for hyperspectral image classification,” 

Remote Sensing, vol. 12, no. 1, 2020, doi: 10.3390/RS12010125.

[32] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral-Spatial Residual 
Network for Hyperspectral Image Classification: A 3-D Deep 

Learning Framework,” IEEE Transactions on Geoscience and 

Remote Sensing, vol. 56, no. 2, pp. 847–858, 2018, doi: 
10.1109/TGRS.2017.2755542. 

[33] A. Mohan and M. Venkatesan, “HybridCNN based hyperspectral 

image classification using multiscale spatiospectral features,” 
Infrared Physics and Technology, vol. 108, no. March, 2020, doi: 

10.1016/j.infrared.2020.103326.

[34] A. Mohan and V. Meenakshi Sundaram, “V3O2: hybrid deep 
learning model for hyperspectral image classification using vanilla-

3D and octave-2D convolution,” Journal of Real-Time Image

Processing, no. 0123456789, 2020, doi: 10.1007/s11554-020-00966-
z.

[35] F. Cao and W. Guo, “Deep hybrid dilated residual networks for 

hyperspectral image classification,” Neurocomputing, vol. 384, pp. 
170–181, 2020, doi: 10.1016/j.neucom.2019.11.092.

[36] A. Ben Hamida, A. Benoit, P. Lambert, and C. Ben Amar, “3-D deep 

learning approach for remote sensing image classification,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 56, no. 8, pp. 

4420–4434, 2018, doi: 10.1109/TGRS.2018.2818945.

[37] M. Ahmad, S. Shabbir, R. A. Raza, M. Mazzara, S. Distefano, and A.
M. Khan, “Hyperspectral Image Classification: Artifacts of 

Dimension Reduction on Hybrid CNN,” no. January, pp. 1–9, 2021. 

[38] L. Jiang, B. Zhu, and Y. Tao, “Hyperspectral Image Classification 
Methods,” Hyperspectral Imaging for Food Quality Analysis and 

Control, pp. 79–98, 2010, doi: 10.1016/B978-0-12-374753-2.10003-

6. 

[39] A. Wang, C. Liu, D. Xue, H. Wu, Y. Zhang, and M. Liu, “Depthwise 

separable relation network for small sample hyperspectral image 

classification,” Symmetry (Basel)., vol. 13, no. 9, 2021, doi: 
10.3390/sym13091673. 

[40] L. Dang, P. Pang, and J. Lee, “Depth-wise separable convolution 

neural network with residual connection for hyperspectral image 
classification,” Remote Sensing, vol. 12, no. 20, pp. 1–20, 2020, doi: 

10.3390/rs12203408. 

[41] B. C. Kuo, H. H. Ho, C. H. Li, C. C. Hung, and J. S. Taur, “A kernel-
based feature selection method for SVM with RBF kernel for

hyperspectral image classification,” IEEE Journal of Selected Topics 
in Applied Earth Observations and Remote Sensing, vol. 7, no. 1, pp. 

317–326, 2014, doi: 10.1109/JSTARS.2013.2262926.

[42] Q. Wang, J. Gao, and Y. Yuan, “A Joint Convolutional Neural 
Networks and Context Transfer for Street Scenes Labeling,” IEEE

Transactions on Intelligent Transportation Systems, vol. 19, no. 5, pp. 

1457–1470, 2018, doi: 10.1109/TITS.2017.2726546.

BIOGRAPHIES 

HÜSEYİN FIRAT received the B.S. degree in 

computer engineering from Cukurova 

University, Adana, Turkey, in 2014. He 

received the M.S. degree in computer 

engineering from Inonu University in 2018. 

He is currently working toward the Ph.D. 

degree in the computer engineering. He also 

works as a lecturer at Dicle University in 

Turkey. His current interests include remote sensing, deep 

learning, and hyperspectral image classificaiton.

MEHMET EMİN ASKER was born in 

Diyarbakır, Turkey, in 1976. He 

received the B.S. degree in electrical 

electronics engineering, from Firat 

University, Elazig, Turkey in 1993, the 

M.S. degree and the Ph.D. degree in

electrical machines, power electronics

from Firat University, Elazig, Turkey, in

2009 and 2016, respectively. He is an Assistant Professor with 

Dicle University, Department of electrical power and energy. 

Where he teaches courses on power system, power electronics, 

circuit theory and electrical machines since 2007. His research 

interests include electrical machines, power electronics and 

power systems.  

DAVUT HANBAY received the B.S., M.S. and 

Ph.D. degreesin electric–electronic 

engineering from Firat University,Elazig, 

Turkey, in 1999, 2003, and 2007, 

respectively. He is the author or coauthor of 

more than 30 papers in journals and 

conferences. His current interests include 

classification, optimization and pattern 

recognition.

46

http://dergipark.gov.tr/bajece



