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Özet. Çalışmanın amacı ℎ keyfi parametresinin seçimi ile ilgili artık hata fonksiyonunu 

kullanarak bu parametrenin optimal değerini belirleyerek mutlak hatayı azaltmaktır. 

Bazı sayısal örnekler çözülmüş ve mevcut sonuçlarla karşılaştırılmıştır. Homotopi 

analiz yöntemi, seri çözümler elde etmek için Burgers denklemine başarıyla 

uygulanmıştır. Gerekli denklemler için elde edilen çözümlere dayanarak, bu yöntemin 

zaman-kesirli kısmi diferansiyel denklemlere uygulanabileceği gösterilmiştir. 

Anahtar Kelimeler: Homotopi analiz metodu, Burgers denklemi, Caputo kesirli türevi 

Abstract. The aim of the study is to reduce the absolute error by determining the 

optimal value of this arbitrary parameter using the residual error function related to the 

selection of the arbitrary parameter ℎ. Some numerical examples are solved and 

compared to existing results. The homotopy analysis method has been successfully 

implemented to Burgers equation to obtain serial solutions. On the base of the solutions 

obtained for the required equations, it has been shown that this method is applicable to 

time-fractional partial differential equations. 
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1. Introduction 

Analytical solution of nonlinear problems is incredibly challenging. The region of 

convergence of the series solution in quasi-analytical methods is frequently determined 

by physical parameters. When non-linearity is strong, quasi-analytical approaches 

frequently fail. Homotopy analysis method (HAM) provides practical results to remove 

these unsuccessful results. HAM is a semi-analytical general technique to produce series 

solutions to numerous nonlinear equations. This method is used to find algebraic, ordinary 

differential, and partial differential equation solutions. This method first provides a 

continuous transform that takes the original approximation to the exact soluiton in order 

to solve the considered problem. An auxiliary linear operator is selected to generate this 

type of continuous transform. An auxiliary parameter is utilized to verify convergence of 

the resulting series solution. This method allows the choice of any initial approximation 

and linear auxiliary operators. A complex nonlinear problem is reduced into an 

enourmous number of easier linear subproblems with the help of HAM.  

Liao (1992) proposed HAM for the first time in his phd thesis [11]. In the years that 

followed, HAM was used to a variety of differential problems [12-14]. With HAM, 

convergence control was also supplied in an analytical series solution technique. Using 

this technique, numerous researchers have effectively solved a variety of physical and 

engineering problems. Sun (2004) applied HAM to the solution of nonlinear traveling 

waves modeled by Klein-Gordon equation [26]. HAM established for the integer order 

differential equation by Song and Zhang (2007) was firstly applied to fractional KdV-

Burgers-Kuramoto problem [25]. Abbasbandy (2008) solved the generalized Benjamin-

Bona-Mahony (BBM) problem by HAM [1]. Abdulaziz et al. (2008) solved a number of 

FPDEs via HAM, such as the fractional wave-like, hyperbolic, and Fisher equations [2].  

Dehghan et al. (2009) solved nonlinear FPDEs by utilizing HAM [5]. In their study, 

Yusufoglu and Selam (2010) determined the range of convergence for the ℎ convergence-
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control parameter by employing HAM to analyze the modified equal-width wave 

equation, and they verified the method's efficiency by determining the appropriate ℎ value 

[31]. In their study (Elsaid, 2011), partial differential equations (PDEs) with spatial and 

temporal fractional derivatives were solved using homotopy analysis in terms of Riesz 

and Caputo [6]. Using HAM, Arafa et al. (2012) obtained effective numerical solutions 

for a system consisting of two fractional reaction-diffusion equations (fractional 

Schnakenberg systems) that model morphogen systems in developmental biology [3, 6]. 

Vishal et al. (2012) utilized HAM to get approximate solution to time-fractional Swift-

Hohenberg equation [30]. In their study, Sakar and Erdogan (2013) utilized HAM to 

numerically solve the nonlinear Fornberg-Whitham equation, compared the results 

acquired with Adomian decomposition method (ADM), and determined the optimal 

values for the convergence-control parameter in the examined ranges [22]. In the study 

of Shaiq et al. (2013), the nonlinear time-fractional wave-like equation was solved by 

using HAM [24]. The method of multi-step homotopy analysis was utilized by Freihat et 

al. (2013) to create a modified epidemiological model for computer viruses [8]. 

In their study, Lu and Liu (2014) utilized HAM to numerically solve the variable 

coefficient KdV Burgers equation numerically [16]. In the study [4], solutions to 

nonlinear wave-like equations were obtained using HAM. In their paper, Odibat and 

Bataineh (2015) presented a novel approach to HAM for nonlinear problems [19]. This 

proposed approach can easily overcome the difficulty of calculating complex integrals. 

In addition, homotopy polynomials are proposed that decompose the nonlinear term of 

the problem into a set of polynomials, and a computational algorithm is developed for 

such polynomials that make the solution procedure simpler and more effective. An 

effective approach was developed for determining the optimal convergence-control 

parameters employed in HAM's analysis of the convergence region [27]. In their paper, 

Pandey and Mishra (2017) developed a hybrid technique for solving third-order fractional 

dispersive wave equations by combining HAM and Sumudu transform [21]. PDEs in 

engineering were solved by using HAM [9]. Jia et al. (2017) implemented optimal 

homotopy analysis method (OHAM) to optimal control problems [10]. Odibat (2018) 

proposed a new approach for the optimal choice of linear operator and initial approach 
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[20]. Van Gorder (2019) developed a novel method for OHAM and error control for 

nonlinear ordinary differential equations (ODEs) [29]. 

The aim of the study is to get numerical solutions of Burgers equation, including the 

arbitrary parameter ℎ, by using HAM. For this reason, the residual error method is utilized 

to determine the optimal parameter values of the ℎ parameter.  

The organization of this article is as follows: In the second chapter, information is 

provided concerning about HAM and its development. Chapter 3 presents the numerical 

solution to the time-fractional Burgers equation by using HAM. Numerical results and 

discussion is given in Chapter 4. In the conclusion chapter, the most significant outcomes 

of the research are emphasized. 

 

2. Homotopy Analysis Method  

HAM is a semi-analytical technique developed by Liao (1992) for the solution of 

nonlinear ODEs and PDEs [11]. It is based on homotopy and Taylor formula, which is an 

essential idea in topology. The flexibility with which the initial approach and auxiliary 

linear operators can be chosen is one of the most crucial components of this method. 

HAM for PDEs will now be introduced. 

2.1. Homotopy Analysis Method for Partial Differential Equations  

Examine the following nonlinear equation to explain the fundamental concept underlying 

the technique utilized in this investigation:   

𝒩[𝑦(𝑥, 𝑡)]  = 0,                                                                                                                           (1) 

where 𝒩 is a nonlinear operator, 𝒙 and 𝒕 are independent spatial and temporal variables, 

𝑦(𝑥, 𝑡) is unknown function dependent on these variables. 

Liao (2003) developed the zero-order deformation equation by utilizing the classical 

homotopy concept [13]. Let 𝑞 ∈ [0,1] be embedding parameter, ℎ ≠ 0 be nonzero 
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convergence-control parameter, 𝐻(𝑥, 𝑡)  be an auxiliary function, 𝑀 be auxiliary linear 

operator and 𝑦0(𝑥, 𝑡), be an initial estimate of  𝑦(𝑥, 𝑡). Therefore, the zero-order 

deformation equation for the solution series 𝜑(𝑥, 𝑡; 𝑞) is given by 

(1 − 𝑞)𝑀[𝜑(𝑥, 𝑡; 𝑞) − 𝑦0(𝑥, 𝑡)] = 𝑞ℎ𝐻(𝑥, 𝑡)𝒩[𝜑(𝑥, 𝑡; 𝑞)].                                           (2) 

Homotopy analysis process method provides arbitrary choices of the convergence-control 

parameter ℎ, the auxiliary function 𝐻(𝑥, 𝑡), and the auxiliary linear operator 𝑀. 𝜑(𝑥, 𝑡; 𝑞) 

which is the solution of the equation is dependent not only on 𝑦0(𝑥, 𝑡), 𝑀, ℎ, and 𝐻(𝑥, 𝑡), 

but also on the embedding parameter 𝑞 ∈ [0,1]. 

When 𝑞 = 0 and 𝑞 = 1 in Eq. (2), the following expressions are obtained, respectively:  

𝜑(𝑥, 𝑡; 0) = 𝑦0(𝑥, 𝑡), 𝜑(𝑥, 𝑡; 1)                                                                                                        

= 𝑦(𝑥, 𝑡).                                                                                                                                        (3) 

When the homotopy parameter 𝑞 increases from 0 to 1, 𝜑(𝑥, 𝑡; 𝑞) continuously converges 

from the initial approximation 𝑦0(𝑥, 𝑡) to the exact solution 𝑦(𝑥, 𝑡). In homotopy, this 

continuous change is referred to as deformation. 

The derivatives of the deformation equation of the 𝑚-th order is defined by: 

𝑦0
(𝑚)(𝑥, 𝑡)  =

𝜕𝑚𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|
𝑞=0

.                                                                                               (4) 

With the aid of Taylor's theorem, the expansion of 𝜑(𝑥, 𝑡; 𝑞) to the power series of 𝑞 is 

obtained as: 

𝜑(𝑥, 𝑡; 𝑞) = 𝑦0(𝑥, 𝑡) + ∑ 𝑦𝑚(𝑥, 𝑡)𝑞
𝑚

+∞

𝑚=1

.                                                                                (5) 

where,   
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𝑦𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|
𝑞=0

.                                                                                              (6) 

And also, the power series of 𝜑(𝑥, 𝑡; 𝑞) is  

𝜑(𝑥, 𝑡; 𝑞) = 𝑦0(𝑥, 𝑡) + ∑ 𝑦𝑚(𝑥, 𝑡)𝑞
𝑚 .

+∞

𝑚=1

                                                                               (7) 

If auxiliary linear operator 𝑀, initial approximation 𝑦0(𝑥, 𝑡), convergence-control 

parameter ℎ, and auxiliary function 𝐻(𝑥, 𝑡) are appropriately chosen, the power series 

𝜑(𝑥, 𝑡; 𝑞) converges at 𝑞 = 1 and it is obtained as 

𝑦(𝑥, 𝑡) = 𝑦0(𝑥, 𝑡) + ∑ 𝑦𝑚(𝑥, 𝑡)

∞

𝑚=1

.                                                                                          (8) 

Liao (2005) showed in the literature that if one of the solutions to the nonlinear equation 

given at the beginning is ℎ = −1 and 𝐻(𝑥, 𝑡) = 1,  the equation turns into the following 

form, which is utilized in the homotopy perturbation method [14]. 

(1 − 𝑞)𝑀[𝜑(𝑥, 𝑡; 𝑞) − 𝑦0(𝑥, 𝑡)] + 𝑞𝒩[𝜑(𝑥, 𝑡; 𝑞)] = 0.                                                     (9) 

If the vector �⃗�𝑛  is defined as 

�⃗�𝑛= {𝑦0(𝑥, 𝑡), 𝑦1(𝑥, 𝑡),… , 𝑦𝑛(𝑥, 𝑡)}.                                                                                      (10) 

According to Eq. (6), the equation of 𝑦𝑚(𝑥, 𝑡) is obtained from the zero-order deformation 

equation.  

Using the 𝒳𝑚 function defined by 

𝒳𝑚 = {
0,     𝑚 ≤ 1,
1,     𝑚 > 1,

                                                                                                                   (11) 

it is obtained as 

𝑀[𝑦𝑚(𝑥, 𝑡) − 𝒳𝑚𝑦𝑚−1(𝑥, 𝑡)] = ℎ𝐻(𝑥, 𝑡)𝑅𝑚(�⃗�𝑚−1, 𝑥, 𝑡),                                               (12) 

where  𝑅𝑚(�⃗�𝑚−1, 𝑥, 𝑡)  is given as follows: 
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𝑅𝑚(�⃗�𝑚−1, 𝑥, 𝑡) =
1

(𝑚 − 1)!

𝜕𝑚−1𝒩[𝜑(𝑥, 𝑡; 𝑞)]

𝜕𝑞𝑚−1
|
𝑞=0

.                                                       (13) 

The 𝑚-th order deformation equation is found using Eq. (13). By using Eqs. (5)-(13), it 

is found as,  

𝑅𝑚(�⃗�𝑚−1, 𝑥, 𝑡) =
1

(𝑚 − 1)!

𝜕𝑚−1

𝜕𝑞𝑚−1
𝒩 [∑𝑦𝑛(𝑥, 𝑡)𝑞

𝑛

+∞

𝑛=0

]|

𝑞=0

.                                          (14) 

𝑚-th order solution approach is obtained as  

𝑦(𝑥, 𝑡) = ∑𝑦𝑘(𝑥, 𝑡),

𝑚

𝑘=0

                                                                                                              (15) 

where the solution 𝑦(𝑥, 𝑡) includes the convergence-control parameter ℎ. The calculation 

of the parameter ℎ will be explained in detail in a subsequent section. 

Theorem 2.1. [13] If the homotopy series in Eq. (8) is convergent, the result is as 

follows: 

∑𝑅𝑛(�⃗�𝑛−1, 𝑥, 𝑡) = 0

∞

𝑛=1

.                                                                                                             (16) 

Proof. For Theorem 2.1.'s proof, it can be seen [13].  

Theorem 2.2. [13] If the homotopy series in Eq. (8) converges, then this series must be 

a solution to the original nonlinear Eq. (1).  

Proof. For Theorem 2.2.'s proof, it can be seen [13]. 

2.2. Optimal Homotopy Analysis Method 

Drawing ℎ curves determines the range of the  ℎ convergence-control parameter in the 

classical HAM. The optimal parameter of the known method by Liao (2010) was 
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investigated [15]. It was utilized a variety of methods to calculate this ℎ parameter [7, 10, 

18, 23, 27-29].  

The exact square residual error in ordinary differential equations for the 𝑚-th order 

approximation is defined by [15] 

∆𝑚= ∫ (𝑁(∑𝑠𝑖

𝑚

İ=0

(𝑤)))

2

𝑑𝑤,

Ω

                                                                                          (17) 

where the expression ∆𝑚 includes an unknown ℎ convergence-control parameter. For the 

𝑚-th approximation, the optimal value of the convergence-control parameter ℎ is the 

minimum value of ∆𝑚. That is 

𝑑∆𝑚
𝑑ℎ

= 0.                                                                                                                                      (18) 

However, it has been shown that when calculating ∆𝑚 given by Liao with the formula 

(17), even if the approximation order is low, a significant amount of CPU time is required. 

In order to reduce CPU time, the average quadratic residual error (√𝐸𝑚  )  is defined as 

follows [15]:  

𝐸𝑚 =
1

𝑛 + 1
∑(𝑁(∑𝑠𝑖

𝑚

𝑖=0

(
𝑗

𝑛
, ℎ)))

2
𝑛

𝑗=0

.                                                                              (19) 

For Burgers equation discussed in this study, the valid version of the Eq. (18) was utilized. 
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3. Burgers Equation 

In this part, Burgers equation with a variable coefficient in one dimensional involving 

fractional derivative in the sense of Caputo is discussed [17]: 

𝐷𝑡
𝛼𝑦(𝑥, 𝑡) + 𝑘1(𝑥, 𝑡)𝑦𝑥(𝑥, 𝑡) + 𝑘2(𝑥, 𝑡)𝑦(𝑥, 𝑡) + 𝑘3(𝑥, 𝑡)𝑦𝑥(𝑥, 𝑡) + 

𝑘4(𝑥, 𝑡)𝑦(𝑥, 𝑡)𝑦𝑥(𝑥, 𝑡) = 𝑓(𝑥, 𝑡),    0 ≤ 𝑥, 𝑡 ≤ 1 , 0 < 𝛼 ≤ 1,                                         (20) 

where, 𝐷𝑡
𝛼is the Caputo fractional derivative operator of order 𝛼 with respect to the time 

variable 𝑡. Also, 𝑘1(𝑥, 𝑡), 𝑘2(𝑥, 𝑡), 𝑘3(𝑥, 𝑡), 𝑘4(𝑥, 𝑡) and 𝑓(𝑥, 𝑡) are continuous 

functions. The initial and boundary conditions of the equation utilized are taken as 

follows: 

𝑦(𝑥, 0) = 0, 

𝑦(0, 𝑡) = 𝑦(1, 𝑡) = 0.                                                                                                               (21) 

If 𝑘1(𝑥, 𝑡) = −1, 𝑘2(𝑥, 𝑡) = 0, 𝑘3(𝑥, 𝑡) = 0, 𝑘4(𝑥, 𝑡) = 1 ve 𝑓(𝑥, 𝑡) =
2𝑡2−𝛼𝑒𝑥

𝛤(3−𝛼)
+

𝑡4𝑒2𝑥 − 𝑡2𝑒𝑥  in Eq. (20), then Burgers equation becomes 

𝐷𝑡
𝛼𝑦(𝑥, 𝑡) − 𝑦𝑥𝑥(𝑥, 𝑡) + 𝑦(𝑥, 𝑡). 𝑦𝑥(𝑥, 𝑡) =

2𝑡2−𝛼𝑒𝑥

𝛤(3 − 𝛼)
+ 𝑡4𝑒2𝑥 − 𝑡2𝑒𝑥 .                       (22) 

The exact solution of this problem is 𝑦(𝑥, 𝑡) = 𝑒𝑥𝑡2. Now, the efficiency of the method 

is investigated by applying HAM to Eq. (22). Obtaining the optimal values for the 

arbitrary parameter ℎ that appears in the solution will be shown. 

Firstly, the linear operator 𝑀 is chosen as follows to provide the property 𝑀[𝑐] = 0: 

𝑀[𝜑(𝑥, 𝑡; 𝑞)] =
𝜕𝛼𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑡𝛼
,                                                                                                (23) 

where 𝑐 is constant. Now, the nonlinear operator is chosen as 
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𝑁[𝜑(𝑥, 𝑡; 𝑞)] =
𝜕𝛼𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑡𝛼
−
𝜕2𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑡2
+ 𝜑(𝑥, 𝑡; 𝑞)

𝜕𝜑(𝑥, 𝑡; 𝑞)

𝜕𝑥
−
2𝑡2−𝛼𝑒𝑥

𝛤(3 − 𝛼)
 

−𝑡4𝑒2𝑥 + 𝑡2𝑒𝑥 .                                                                                                                          (24) 

The zero-order deformation equation is formulated as 

(1 − 𝑞)𝑀[𝜑(𝑥, 𝑡; 𝑞) − 𝑦0(𝑥, 𝑡)] = 𝑞ℎ𝑁[𝜑(𝑥, 𝑡; 𝑞)].                                                        (25) 

By substituting 𝑞 = 0 and 𝑞 = 1 in Eq. (25), the following expressions can written: 

{
𝜑(𝑥, 𝑡; 0) = 𝑦0(𝑥, 𝑡),

𝜑(𝑥, 𝑡; 1) = 𝑦(𝑥, 𝑡).
                                                                                                                (26) 

Thus, the 𝑚-th order deformation equation is written as  

𝑀[𝑦𝑚(𝑥, 𝑡) − 𝜒𝑚𝑦𝑚−1(𝑥, 𝑡)] = ℎ𝑅𝑚(�⃗�𝑚−1(𝑥, 𝑡)),                                                           (27) 

where, 

𝑅𝑚(�⃗�𝑚−1(𝑥, 𝑡)) =
𝜕𝛼𝜑𝑚−1(𝑥, 𝑡; 𝑞)

𝜕𝑡𝛼
−
𝜕2𝜑𝑚−1(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+𝜑𝑚−1(𝑥, 𝑡; 𝑞)

𝜕𝜑𝑚−1(𝑥, 𝑡; 𝑞)

𝜕𝑥
 

−(
2𝑡2−𝛼𝑒𝑥

𝛤(3 − 𝛼)
+ 𝑡4𝑒2𝑥 − 𝑡2𝑒𝑥)(1 − 𝜒𝑚).                                                                           (28) 

Also where, Adomian polynomial for the nonlinear term is written as:   

∑𝜑𝑛

𝑚−1

𝑛=0

(𝑥, 𝑡; 𝑞)
𝜕𝜑𝑚−1(𝑥, 𝑡; 𝑞)

𝜕𝑥
.                                                                                             (29) 

Hence, Burgers equation becomes  

𝑅𝑚(�⃗�𝑚−1(𝑥, 𝑡)) =
𝜕𝛼𝜑𝑚−1(𝑥, 𝑡; 𝑞)

𝜕𝑡𝛼
−
𝜕2𝜑𝑚−1(𝑥, 𝑡; 𝑞)

𝜕𝑡2
 

+ ∑ 𝜑𝑛

𝑚−1

𝑛=0

(𝑥, 𝑡; 𝑞)
𝜕𝜑𝑚−1(𝑥, 𝑡; 𝑞)

𝜕𝑥
− (

2𝑡2−𝛼𝑒𝑥

𝛤(3 − 𝛼)
+ 𝑡4𝑒2𝑥 − 𝑡2𝑒𝑥) (1 − 𝜒𝑚).             (30) 

The solution to the 𝑚-th order deformation equations for 𝑚 ≥ 1 is obtained as 

𝑦𝑚(𝑥, 𝑡) = 𝜒𝑚𝑦𝑚−1(𝑥, 𝑡) + ℎ𝑀
−1[𝑅𝑚(�⃗�𝑚−1(𝑥, 𝑡))].                                                      (31) 
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To begin the iteration, the initial approximation 𝑦0(𝑥, 𝑡) must be known. Initial approach 

can be chosen arbitrarily to satisfy initial and boundary-value conditions.  

If 𝑦0(𝑥, 𝑡) = 0 in Eq. (31), the first few iteration terms are as follows: 

𝑦0(𝑥, 𝑡) = 0,                                                                                                                                (32) 

𝑦1(𝑥, 𝑡) =
ℎ𝑒𝑥(−𝛤(𝛼 + 5)𝑡2 − 24𝑒𝑥𝑡𝛼+4 + 2𝛼2𝑡𝛼+2 + 4𝛼𝑡𝛼+2 + 24𝑡𝛼+2)

𝛤(𝛼 + 5)
,          (33) 

⋮ 

 

4. Numerical Results and Discussion   

The approximate solution   is calculated as 𝑢𝑚(𝑥, 𝑡) = ∑ 𝑦𝑚(𝑥, 𝑡).
𝑚
𝑘=0  In the HAM, ℎ 

parameter is the convergence-control parameter. For the optimal value of this parameter, 

the squared residual error method will be used. The region will be taken as (𝑥, 𝑡) ∈

[0,
1

2
] × [0,

1

2
]. Let's define the residual function as follows: 

𝑟3(𝑥, 𝑡, ℎ) = 𝐷𝑡
𝛼𝑢3(𝑥, 𝑡, ℎ) −

𝜕2𝑢3(𝑥, 𝑡, ℎ)

𝜕𝑥2
− 𝑢3(𝑥, 𝑡, ℎ)

𝜕𝑢3(𝑥, 𝑡, ℎ)

𝜕𝑥
 

−(
2𝑡2−𝛼𝑒𝑥

𝛤(3 − 𝛼)
+ 𝑡4𝑒2𝑥 − 𝑡2𝑒𝑥).                                                                                             (34) 

Taking the 2nd norm of this residual function yields the expression 

𝑒3(ℎ) =

(

 
1
1
2

.
1
1
2

∫∫|𝑟3(𝑥, 𝑡, ℎ)|
2𝑑𝑡𝑑𝑥

1

2

0

1

2

0
)

 

1

2

.                                                                            (35) 

In calculating the optimal values of the ℎ parameter, the minimum of 𝑒3(ℎ) according to 

norm 2 will be chosen. 

The optimal ℎ parameters for 𝛼 = 1, 0.9, 0.8, 0.7 are shown in the following table 1. 
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The numerical computations are shown in Tables 2-5 and Fig. 1. 

 

Table 1. The optimal ℎ parameters for 𝛼 = 1, 0.9, 0.8, 0.7. 

𝑚               𝛼 = 1                       𝛼 = 0.9                        𝛼 = 0.8                    𝛼 = 0.7 

3          0.7671576951          -0.5298577453            -0.4075433436         -0.3242486092 
 

 

Table 2.  Comparison of exact solution and HAM solution for 𝜶 = 𝟏 in Eq. (22). 

𝑥 𝑡 HAM Exact Solution Absolute Error (AE) 

0.20 

0.20 

0.10 0.0120078877 0.0122140275 2.06E-4 

0.20 0.0478689819 0.0488561103 9.87E-4 

0.20 0.30 0.1076578753 0.1099262482 2.26E-3 

0.20 0.40 0.1923444856 0.1954244413 3.07E-3 

0.20 0.50 0.3045316031 0.3053506895 8.19E-4 

0.50 0.10 0.0162104277 0.0164872127 2.76E-4 

0.50 0.20 0.0646663837 0.0659488508 1.28E-3 

0.50 0.30 0.1457253815 0.1483849144 2.65E-3 

0.50 0.40 0.2614341670 0.2637954034 2.36E-3 

0.50 0.50 0.4168778270 0.4121803178 4.69E-3 
 

Table 3.  Comparison of exact solution and HAM solution for 𝜶 = 𝟎.𝟗 in Eq. (22). 

𝑥 𝑡 HAM Exact Solution AE 

0.20 

0.20 

0.10 0.0107364327 0.0122140275 1.47E-3 

0.20 0.0422684704 0.0488561103 6.58E-3 

0.20 0.30 0.0940180048 0.1099262482 1.59E-2 

0.20 0.40 0.1664160774 0.1954244413 2.90E-2 

0.20 0.50 0.2615618637 0.3053506895 4.37E-2 

0.50 0.10 0.0144946722 0.0164872127 1.99E-3 

0.50 0.20 0.0571195568 0.0659488508 8.82E-3 

0.50 0.30 0.1273944830 0.1483849144 2.09E-2 

0.50 0.40 0.2267136196 0.2637954034 3.70E-2 

0.50 0.50 0.3595539798 0.4121803178 5.26E-2 

 

 

 

 



Time-Fractional Burgers Equation 

129 

 

Table 4.  Comparison of exact solution and HAM solution for 𝜶 = 𝟎.𝟖 in Eq. (22). 

𝑥 𝑡 HAM Exact Solution AE 

0.20 

0.20 

0.10 0.0093120640 0.0122140275 2.90E-3 

0.20 0.0362293866 0.0488561103 1.26E-2 

0.20 0.30 0.0798831342 0.1099262482 3.00E-2 

0.20 0.40 0.1405973462 0.1954244413 5.48E-2 

0.20 0.50 0.2204604068 0.3053506895 8.48E-2 

0.50 0.10 0.0125726342 0.0164872127 3.91E-3 

0.50 0.20 0.0489826902 0.0659488508 1.69E-2 

0.50 0.30 0.1084038925 0.1483849144 3.99E-2 

0.50 0.40 0.1921648849 0.2637954034 7.16E-2 

0.50 0.50 0.3048139294 0.4121803178 1.07E-1 
 

Table 5.  Comparison of exact solution and HAM solution for 𝜶 = 𝟎.𝟕 in Eq. (22). 

𝑥 𝑡 HAM Exact Solution AE 

0.20 

0.20 

0.10 0.0079127016 0.0122140275 4.30E-3 

0.20 0.0303901811 0.0488561103 1.84E-2 

0.20 0.30 0.0664724198 0.1099262482 4.34E-2 

0.20 0.40 0.1165825275 0.1954244413 7.88E-2 

0.20 0.50 0.1829901398 0.3053506895 1.22E-1 

0.50 0.10 0.0106845311 0.0164872127 5.80E-3 

0.50 0.20 0.0411183005 0.0659488508 2.48E-2 

0.50 0.30 0.0904015854 0.1483849144 5.79E-2 

0.50 0.40 0.1600752973 0.2637954034 1.03E-1 

0.50 0.50 0.2550116282 0.4121803178 1.57E-1 

 

 

Figure 1. Absolute error graph for 𝜶 = 𝟏in Eq. (22). 
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5. Conclusion 

In this study, the optimal parameter used for ordinary differential equations was 

successfully applied to the fractional partial Burgers equation, resulting in serial 

solutions. By narrowing the studied region or increasing the number of iterations, it is 

possible to lower the absolute error. In light of the solutions obtained for Burgers equation 

discussed in this study, it is thought that this method can be used to solve linear and 

nonlinear FPDEs.  
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