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 Detection of pre-seizure signs in epileptic signals may help patients to survive the seizure with 

minimal damage. This study aims to detect epileptic seizure patterns using EEG datasets of five 
patients. The signals' maximum power spectral density (PSD) and high-frequency oscillations 

(HFOs) signals are investigated. The PSDs of all patients' signals are calculated, and the subbands 

of the maximum PSD are examined. It is observed that 95%, 85%, 85%, 75%, and 80% of the 

channels of the five patients are in the sum of delta and theta subbands of the maximum PSD, 
respectively. All patients' maximum power frequency subbands of F4 and T3 channels included 

only delta and theta subbands. Furthermore, frequency increase rates of pre-ictal and ictal signals 

are investigated, and increasing PSDs of ripples and fast ripples are then calculated. A much 

higher-frequency ripple follows the low-frequency ripple in 75%, 75%, 65%, 85%, and 75% of 
the channels of the first, second, third, fourth, and fifth patients, respectively. For the pre-ictal data, 

a much higher frequency ripple is not seen, followed by a low-frequency ripple in 90%, 85%, 75%, 

90%, and 90% of all channels of five patients, respectively. In addition, in this study, the frequency 

of signals is observed to be 80 Hz and above in the Fp2, C4, P4, O2, and Pz channels, which are 
common to all patients. Consequently, examining PSD and HFO signals ensures the detection of 

the differences between the data sets and detects the epileptic seizure patterns in all five patients. 

 
This is an open access article under the CC BY-SA 4.0 license. 
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1. Introduction 

Epilepsy is a non-infectious chronic brain disease that 

influences nearly fifty million people of all ages globally. It 

consists of repetitive seizures resulting from aberrant 

electrical discharges in collective brain cells [1]. These can 

be caused by brain damage, head trauma, chromosomal and 

developmental disorders, hereditary diseases, and genetic or 

unknown reasons [2]. Epilepsy is a curable disease; however, 

despite all known treatments, seizures may not be controlled 

[3]. Due to these uncontrollable seizures, the quality of life of 

individuals with epilepsy decreases. Since the time and place 

of seizures are unknown, these people are in constant danger, 

so detecting seizures is crucial [9]. Due to this reason, in this 

study, the determination of the differences between healthy 

and epileptic seizure signals is investigated. In 1991, it was 

shown in Spehlmann's EEG Primary book that EEG has great 

importance in the diagnosis of epilepsy and is effective in the 

differentiation of specific syndromes. The EEG was claimed 

to remain normal in 10% to 40% of epileptic cases. It 

explained that sleep, sleep deprivation, and hyperventilation 

(excessive breathing) facilitate the emergence of discharges 

in epileptic patients [4]. Meldrum and Chapman examined the 

synaptic release of amino acid neurotransmitters by in vivo 

microdialysis in 1999. They reported that extracellular 

hippocampal concentrations of glutamate and aspartate were 

increased before seizure onset in patients with epileptic foci 

in the temporal lobe [5]. Andrzejak et al. stated that there was 

a consistent decline in the strength of the delta subband in the 

pre-ictal term compared to the inter-ictal period [6]. Zhao et 

al. obtained a decrease in hemoglobin oxygenation 20 

seconds before seizure onset [7]. It was also proposed that 
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ephemeral focal tissue oxygen deficiency and insufficient 

blood supply to the extremities are good signs for the epileptic 

centers and may occur before the outset of the ictal case [8]. 

Varvsky et al. stated that to fully agree with the epileptic 

brain, the period after the seizure is crucial regarding how the 

brain affects the seizure. They also defined structures like 

alterations in chemical (adenosine) or rebalancing of the 

chemical inequality accountable for on-setting the seizure [9]. 

As a result of a study conducted in 2012, individuals who 

have epilepsy were not nominees for surgical operation with 

vagal nerve stimulation for some patients; reducing or 

stopping the seizures was possible [10]. In 2014, the 

prediction of epileptic seizures was performed prospectively 

[11]. In the same year, Moghim and Corne noted that before 

the onset of seizures, an increase in the availability of oxygen, 

amount of oxygen in the blood, cerebral blood outflow, and 

any changes in heartbeat rate were involved [12]. Performing 

an analysis of venous blood gas based on pH, bicarbonate, 

base surplus, and lactate just one hour after the recent 

epileptic seizure attack could be used to predict the seizures 

[13]. In 2016, Teixeira et al. showed that before the onset of 

the seizure, a decrease in band power of the EEG since lower 

frequencies led to a decrease in the correlation process [14]. 

In addition, a method of predicting an epileptic seizure was 

proposed by combining a method of detecting changes in 

heart rate and identifying an abnormal condition [15]. 

Another study showed that impending seizures in multi-

channel EEG data could be predicted with mean phase 

coherence, a measure of phase synchrony [16]. 

Lai and Chiang explained that automatic detection of 

epileptic seizures in EEG could be performed with machine 

learning methods using the dataset consisting of five different 

patient categories [17]. MJN Neuroserve developed a device 

that predicts epileptic seizures based on real-time stress and 

heart rate monitoring in 2018 [18]. After one year, Wang and 

colleagues automatically identified epileptic cases using a 

combination of Gradient Boosting Machine and system [19]. 

In another study, researchers developed an auto-detection 

method that effectively filters noise and considers the 

variability in EEG signals, potentially making it suitable for 

the clinical diagnosis of epileptic seizures [20]. Furthermore, 

an epileptic seizure detection focused on signal processing in 

the time-frequency domain with a multilevel Discrete 

Wavelet Transform (DWT) and nonlinear Artificial Neural 

Network (ANN) model was presented [21]. In 2020, Slimen 

et al. estimated that spikes in the ictal (during seizure) period 

increased compared to other periods, and spikes increased 

suddenly in the pre-ictal period compared to the inter-ictal 

period based on EEG sudden detection [22]. A recent study 

stated that continuous EEG monitoring is a standard approach 

for epilepsy detection to distinguish between epileptic 

seizures and non-epileptic seizures [23]. 

Power spectral density (PSD) is the most widely used 

feature for epileptic seizure detection. Spectral power 

properties such as absolute band powers in specific bands, 

relative band powers, or spectral power ratios between these 

are known to be good properties for seizure detection or 

prediction [24]. 

Automatic analysis of the human EEG began in the early 

1970s to help diagnose epilepsy. Total signal strength can be 

a useful measure of the difference in the variation between 

ictal and non-ictal EEG. In addition to variation in the 

aggregate signal power, it is feasible that the power in specific 

frequency bands would expose differences between epileptic 

and non-epileptic signals. The epileptic EEG generally 

includes spike and wave ingredients of frequencies up to 

approximately 20 Hz. It would be acceptable to await that the 

power of this frequency band, for a specific subject and 

recording, would be higher for epileptic EEG than non-

epileptic one. A consistently higher mean power was 

demonstrated in the ictal EEG compared to the non-ictal 

period [25]. PSD has been used in many epileptic seizure 

classification studies to detect seizures in EEG segments. In 

similar studies, the PSD of each EEG data is calculated with 

different spectral analysis methods in addition to different 

feature extraction. These features are taken as input to 

classifiers, deep learning methods, or different machine 

learning methods. These methods have been used to optimize 

feature subsets such as PSD and to train the models [26, 27, 

28, 29, 30, 31, 32, 33, 34]. In a study, spectral power was 

calculated in nine bands and used as a feature set for seizure 

prediction [35]. Another study in 2019 showed that the 

spectral power ratio in two distinct bands, rather than its 

characteristics in a particular band, can obtain better 

performance for seizure prediction, importantly [36]. 

Moreover, the spectral energy of the frequency subbands 

carrying the full information in the EEG signal was 

determined, and various subband combinations were obtained 

[37]. A recent study presented the feasibility of binary 

Hyperdimensional (HD) computation for detecting seizures 

from EEG data using local binary pattern (LBP) coding and 

PSD features. As a result of that study, it was seen that the 

PSD method outperformed the LBP method in test sensitivity, 

specificity, accuracy, and AUC (Area Under Curve) [38]. 

High-frequency oscillations (HFOs) are assigned as an 

influential factor in determining seizure activity. HFOs are 

promising biomarkers for epileptogenic tissue. HFOs are 

divided into ripples (R; 80–250 Hz) and fast ripples (FRs; 

250–500 Hz). Most studies have reported higher HFO rates 

in epileptogenic tissue than non-epileptogenic tissue [39]. 

Recently, many studies have been done on the automatic 

detection of HFOs [40, 41, 42]. In 2021, Schoenberger et al. 

showed in an electrical stimulation study that 'pure' ripples, 

as opposed to epileptic surges, are essentially physiological 

[43]. 

This study used the well-known EEG dataset from the 

Department of Epileptology, University of Bonn,  
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Germany. First, these datasets were preprocessed. Then, 

the EEG signals were divided into subbands, and the 

subbands with the maximum power spectral density were 

determined. These procedures were applied to healthy, pre-

ictal, and ictal-containing datasets (A, C, E sets). In addition, 

the HFOs in the EEG signals and the maximum amplitude 

ratios of the pre-ictal and ictal EEG signals in the frequency 

subbands were calculated. The frequency values of the pre-

and-ictal EEG signals between the reference electrode (Fz) 

and the remaining channels were examined. Consequently, in 

this study, we determined the differences between healthy 

and epileptic seizure signals. 

2. Materials and Methods  

The flow diagram of the epileptic pattern detection system 

used in this study is given in Figure 1. First, EEG data is 

filtered with a band-pass filter as a preprocessing step. 

Secondly, due to the difficulties in the time domain, the 

signals are transformed into the frequency domain. Thirdly, 

the EEG signals are separated into subbands with the discrete 

wavelet transform (DWT) method to make the signals clearer. 

Then, the frequency subbands with the maximum PSDs of the 

signals are examined. After the HFOs in the signals are 

detected, the increasing value of the power spectral density 

(PSD) of ripples and fast ripples are calculated. Finally, with 

the resultant maximum PSD values and HFOs, epileptic 

seizure patterns can be detected.   

2.1. Explanation of EEG data 

The EEG dataset (well-known) used in this study was 

provided by the Department of Epileptology, University of 

Bonn, Germany, using a standard 10-20 electrode system (see 

Figure 2) [44]. The EEG dataset consists of 5 sets: A, B, C, 

D, and E. Each set contains 100 channels. A and B sets consist 

of EEG recordings from five healthy individuals. Set A 

consists of recordings taken with eyes open and set B with 

eyes closed. Other sets are taken from the EEG archive and 

belong to the pre-operative period. The signals in set D were 

recorded from the region that caused epilepsy. Set C was 

recorded from the opposite hippocampal part of the brain. C 

and D sets include only activity measured at non-seizure term. 

Set E includes only seizure activities. The sampling 

frequency of the data is 173.61. All .txt files include 4096 

samples [44]. EEG data of these five datasets were drawn 

with the MATLAB program (Figure 3). In this study, we 

decided to compare healthy (set A), pre-ictal (set C), and 

epileptic (set E) signals, so we used only A, C, and E datasets. 

We used sets A and E to classify healthy and epileptic data 

and set C to predict impending seizure activity. 

 

Figure 2. Positions of the surface electrodes correspondingly the 
international 10-20 electrode system [44] 

 

Figure 3. Graphical representation of EEG signals of A (healthy, 
eyes open), B (healthy, eyes closed), C (pre-ictal, opposite 

hippocampal), D (pre-ictal, epileptic region), and E (ictal) from 
first channel 

2.2. Preprocessing of the EEG signals  

One should do preprocessing to eliminate the noise in EEG 

signals. Many artifacts, such as eye-muscle movements or 

power line interference, may occur while recording EEG 

signals [45]. The frequency interval of EEG artifacts does not 

Figure 1. Steps of the epileptic pattern detection system 
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usually exceed 50 Hz, device artifacts rarely exceed 30 to 

40 Hz [46], and power line interference remains at 50 or 

60 Hz [47]. Therefore, considering the EEG frequency bands, 

a band-pass filter is applied to limit the frequency of the 

signals between 0.5-45 Hz.  

2.3. Discrete Wavelet Transform (DWT) 

Discrete Wavelet Transform (DWT) is a method for 

decomposing non-stationary signals into different frequency 

subbands. However, it contains no physical comments about 

the signals [41]. This method splits signals into wavelet 

coefficients. Due to its conformity with variant-size windows, 

it ensures exact time and frequency knowledge at low and 

high frequencies. It enables the signal to be decomposed into 

coarse approximation and detailed knowledge with 

consecutive low and high pass filters. If the filter produces 

the coarse approximation and detail coefficients, it is called a 

low-pass and a high-pass filter, respectively. The sizes of 

coarse coefficients decrease by a factor of two in the 

subsequent decomposition. The time resolution is halved at 

each decomposition step, while the frequency resolution 

doubles (Figure 4) [45]. Choosing the most suitable 

separation level to perform the DWT process correctly is 

crucial. We can determine the number of decomposition 

levels according to the dominant frequency [45]. 

  

 

Figure 4. Application of discrete wavelet transforms [45] 

2.4. Frequency Domain Analysis 

In this study, we performed the frequency analysis of EEG 

signals. It is preferred due to its proven capability to 

distinguish between epileptic and non-epileptic EEG. Non-

overlapping windows of EEG data with two seconds from a 

single channel are filtered in frequency bands to suit dual-

style distributions in DWT analysis. These frequency bands 

are 2-4 Hz, 4-8 Hz, 8-16 Hz, and 16-32 Hz, which contain all 

frequencies of epileptic seizures and generally do not contain 

higher frequencies of artifacts. After filtering, each resultant 

frequency band's mean signal strength is computed [9]. 

2.5. Fast Fourier Transform (FFT) and Power Spectral 
Density (PSD) 

EEG signals contain events with different frequencies. 

Most events are not always apparent in the time domain when 

cases at different frequencies interact [9]. PSD is an practical 

analysis method to determine EEG's static and dynamic 

properties. Dynamic features are reviewed to capture the 

time-varying nature of EEG. A locally stable behavior is 

referred to as static property. The most common method used 

to detect epileptic seizures is PSD. The features of the EEG 

signals with PSD estimation are computed to symbolize these 

signals selectively. The PSD is computed with the Fourier 

transform of the autocorrelation sequence found by non-

parametric methods [9]. 

Frequency transform is applied to the y[n] signal to make 

our signal more understandable. With this transformation 𝑛 

[9] is defined as 𝜔. Frequency transform can be used for any 

signal consisting of a linear combination of fundamental 

(basic) functions (𝑏𝑛[𝑘], 𝑎𝑡 𝑡𝑖𝑚𝑒). These functions act as an 

implicit identity in the time domain and isolate the elements 

in time [9]: 

 

𝑏𝑛[𝑘] = {
1 𝑖𝑓 𝑘 = 𝑛

    0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                (1) 

 

The original signal (𝑦[𝑛]) in the time domain can be 

rewritten as follows: 

 

𝑦[𝑛] =  ∑ 𝑦[𝑘]𝑏𝑛[𝑘],           𝑛 = 1, 2, 3 …∞
𝑘=−∞                (2) 

 

Fundamental functions in the frequency domain isolate the 

different frequency components of the 𝑦[𝑛] signal by 

projecting them into fundamental sinusoidal functions. These 

basic functions were chosen due to their excellent 

performance in isolating items with different frequencies. In 

the next step, the signal is defined in the frequency domain in 

the point of frequency components. Frequency domain 

analysis is known as a method for estimating frequency-

related features. 

For finite time domain signals with discrete time, the FFT 

of a random windowed signal 𝑦[𝑛] for 𝑛 = 𝑘 + 1, 𝑘 +

2 … , 𝑘 + 𝑁 is given by [9]: 

 

𝐹𝐹𝑇(𝜔, 𝑘) =  ∑ 𝑦[𝑛 + 𝑘]𝑒−𝑖𝜔𝑛,    𝜔 =  
2𝜋𝑚

𝑁
𝑁
𝑛=1              (3) 

 

The fundamental sinusoidal functions                     𝑒−𝑖𝜔𝑛 =

cos(𝜔𝑛) − 𝑖 sin(𝜔𝑛)   are able to isolate action at different 

frequencies 𝜔, measured in terms of radians. 

The FFT is defined for 0 ≤  𝜔 =  
2𝜋𝑚

𝑁
< 2𝜋 with 𝑚 =

0, 1 … 𝑁 − 1. The range 0 to 2𝜋 is separated in equal divisions 

limited the number of samples in the windowed 𝑦[𝑛]. To 

scale to correct the frequency sequence in Hz, a 

transformation of 𝜔 = 2𝜋𝑓/𝐹𝑠 is required, where 𝐹𝑠 is the 

sampling rate of the data and 𝑓 is the frequency in Hz among 

zero and 𝐹𝑠  [9]. 

PSD is defined as a function of 𝜔. It also contributes each 

frequency item to the strength of the resultant signal 𝑦[𝑛]: 

𝑃𝑆𝐷[𝜔, 𝑘] = |𝐹𝐹𝑇[𝜔, 𝑘]|2                                              (4) 

 

where | . | specifies  the absolute value. The concept of 

power is kept among the time and frequency domain [9]. In 
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this study, both PSD and maximum PSD were also 

investigated. 

2.6. Ripples and fast ripples in the EEG signal 

We aforementioned in Section 1 that oscillations in EEG 

signals are suitable biomarkers for seizure detection. They 

produce brain activities observed on EEG in the 80-500 Hz 

range, which are divided into high-frequency oscillations 

(HFOs) as ripples (80–250 Hz) and fast ripples (FRs; 250–

500 Hz) [39]. HFOs are associated with seizures if there are 

HFOs in the transition from the pre-ictal to the ictal region. 

In addition, HFOs are increased from the inter-ictal (in the 

seizure-free period) to the pre-ictal periods and are spatially 

kept. 

Ictal oscillations are mostly related to the seizure onset site. 

Just before the seizure, inhibitory and spike activities 

decrease. Then the epileptogenic activity of the tissue 

increases, and there is an increase also in HFOs. Therefore, in 

this study, a band-pass filter was first applied to the EEG 

signals using a sampling rate of 2 kHz to detect these ripples. 

As a result, signals with low-frequency components were 

eliminated, and signals with high-frequency (80-500 Hz) 

components were used [50]. The increasing PSD's of ripples 

and fast ripples were then calculated. Finally, the labeling 

process was carried out by normalization. 

3. Results 

In this study, we presented the methods for detecting the 

differences between healthy and epileptic seizure patterns. 

These methods were applied to all healthy and epileptic 

individuals, including the A, C, and E EEG data sets were 

taken from the Department of Epileptology, University of 

Bonn, Germany [44]. This study's calculations and signal 

processing steps were done online using Matlab (2021) [50]. 

First, the raw EEG signals were passed through a band-pass 

filter. Using the DWT method, the signals were decomposed 

into subbands, and the complexity of the signals was reduced 

[51]. Figures 5, 6, and 7 show the subband plots of sets A, C, 

and E with DWT, respectively. 

 

Figure 5. Discrete wavelet transform of EEG set A 

 

Figure 6. Discrete wavelet transform of EEG set C 

 

Figure 7. Discrete wavelet transform of EEG set E 

Since EEG signals are not clear and comprehensible in the 

time domain, we applied Fast Fourier Transform (FFT). After 

FFT, we calculated the PSD of each signal and determined 

the frequency subbands with the maximum power. We 

compared each set with the PSD at each frequency subband. 

With this comparison, we determined the differences between 

healthy, pre-seizure, and epileptic EEG patterns.  

In the frontocentral head regions, physiologically, the 

rhythm seen in deep sleep is the delta rhythm. In the case of 

generalized encephalopathy and focal cerebral dysfunction, 

the pathological delta rhythm occurs in awake states. People 

with temporal lobe epilepsy have temporal intermittent 

rhythmic delta activity (TIRDA). In the awake state, focal 

theta activity expresses focal cerebral dysfunction.  The 

occipital head region in regular awake EEG recordings has a 

characteristic posterior dominant alpha rhythm. This rhythm 

is a feature of the normal background rhythm of adult EEG 

recording. It is known that in normal adults and children, the 

beta rhythm is the most common [49].  This pathological 

information of EEG subbands is the basis of our study.  
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Table 1. Frequency values and maximum PSD of each channels of 
five patients (Pat) in set E (* delta, * theta, * alpha, * beta, and * 
max (PSD)) Frequency value in maximum power (𝐻𝑧) / Maximum 
PSD  (𝑉2/𝐻𝑧)(𝑥104) 

  Pat-1 Pat-2 Pat-3 Pat-4 Pat-5 

 

 

 

Fp1 3.6/11.2 2.62/1.0 1.99/18.5 13.3/9.3 2.75/29.1 

Fp2 4.53/11.0 4.23/1.6 6.65/15.4 5.5/6.2 5.5/18.3 

F3 3.6/5.9 2.58/3.5 4.78/2.6 6.1/2.4 6.61/0.7 

F4 6.65/3.8 4.7/3.7 4.49/29.1 6.05/0.7 1.56/2.1 

C3 5.16/11.5 2.58/15.1 1.56/5.0 3.47/18.0 14.95/7.8 

C4 6.10/4.3 6.35/2.1 4.49/11.1 5.12/6.3 8.17/1.4 

P3 0.76/4.3 14.19/14.6 16.27/15.4 5.0/37.6 5.16/17.2 

P4 6.65/51.2 4.49/38.6 4.49/12.4 9.83/13.4 6.1/6.5 

O1 5.5/12.3 1.69/3.3 12.28/10.3 1.39/5.9 1.69/4.2 

O2 16.27/17.3 12.28/9.4 6.48/8.5 6.35/10.0 14.11/2.3 

F7 5.72/4.9 6.65/9.5 2.45/0.7 1.56/2.3 5.25/16.1 

F8 4.78/51.5 2.2/0.8 4.25/2.8 6.65/13.8 3.43/5.0 

T3 5.93/20.9 5.16/16.3 1.99/4.5 3.6/8.2 2.03/38.1 

T4 2.45/0.9 5.16/7.0 13.34/5.4 1.01/1.3 6.65/12.2 

T5 1.01/5.9 14.19/17.7 4.78/4.1 6.1/8.8 6.65/5.7 

T6 1.31/1.3 6.1/7.9 2.2/1.3 14.36/10.9 6.1/1.5 

Fz 4.53/23.3 1.94/15.6 6.65/10.4 11.77/0.6 6.65/48.0 

Cz 1.77/2.4 1.69/1.6 3.43/10.25 10.08/0.8 6.65/12.4 

Pz 3.6/18.3 5.65/1.9 4.49/51.7 5.29/25.8 9.57/9.8 

FCz 6.65/6.8 1.69/5.5 2.03/37.3 6.65/55.1 5.8/4.5 

 

When the frequency subbands with maximum power are 

examined, in set E, maximum power is mainly seen in the 

delta and theta subbands. Also, a small part of the channels is 

in the alpha and beta subbands. 

As given in Section 2.1, set E included only seizure 

activity. Since the E set includes delta and theta rhythms, our 

results are verified this information.  Table 1 contains the 

maximum power calculated from the EEG signals of all 

channels of the five patients in the E set and the frequency 

values with the maximum power. 

Table 2 includes the percentages of the subbands of these 

frequencies (given in Table 1) in each channel according to 

the total channels. For example, examining Patient 1, one can 

see that 5% of the channels contain alpha and beta subbands, 

and 95% contain delta and theta subbands. Table 2 shows that 

these were epileptic signals for all patients in the E set. Apart 

from that, healthy, pre-seizure, and seizure signals were 

distinguished when the increase in PSDs of the A, C, and E 

sets was checked (not given in Table form). 

Table 2. The percentage ratio of the number of frequencies in each 
subband of the set E to all frequencies in the total subband at 
maximum PSD (Pat: Patient) 

 Alpha Beta Delta Theta Total  

(Alpha 

+ Beta) 

Total 

(Delta + 

Theta) 

Pat-1 0.0 5.0 40.0 55.0 5.0 95.0 

Pat-2 5.0 10.0 40.0 55.0 15.0 85.0 

Pat-3 10.0 5.0 35.0 50.0 15.0 85.0 

Pat-4 15.0 10.0 25.0 50.0 25.0 75.0 

Pat-5 10.0 10.0 25.0 55.0 20.0 80.0 
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Figure 8. PSDs of the signals of the F4 channel of the all individuals (healthy and patient) of the sets A, C, E 
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Figure 9. PSDs of the signals of the T3 channel of the all individuals (healthy and patient) of the sets A, C, E 
 

Figure 10. Corresponding power spectral density to wideband ictal and pre-ictal EEG signal (T3 channel) 
 

Figure 11. Corresponding power spectral density to wideband ictal and pre-ictal EEG signal (Fp1 channel) 
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We choose channels F4 and T3 due to the frequency 

subbands with maximum power, including only the delta and 

theta subbands for all patients. When the increases in PSDs 

of the A, C, and E sets were examined, it was seen that 

healthy, pre-seizure, and seizure signals were distinguished 

from each other. The PSDs of the F4 and T3 channels of the 

first and second individuals at these sets used in Figure 8 and 

Figure 9 are plotted, respectively. As can be seen from these 

figures, the PSD of the epileptic signal is higher than the PSD 

of the pre-seizure signal, and the PSD of the pre-seizure 

signal is higher than the PSD of the healthy signal. In 

particular, the PSD of the epileptic signal is considerably 

higher than the PSD of the healthy signal, which allows the 

two signals to be distinguished from each other. Furthermore, 

the healthy EEG signal frequency is spread over a wider band 

than the pre-seizure and epileptic EEG signals. Moreover, to 

distinguish the ictal and pre-ictal signals from each other, we 

used another method as HFOs in the EEG signals. When the 

EEG signals of each channel of each patient in the E dataset 

were examined, ripples and fast ripples were detected. A 

band-pass filter was first applied to the EEG signals using a 

sampling rate of 2 kHz to detect these ripples. As a result, 

signals with low-frequency components were eliminated, and 

just signals with high-frequency (80-500 Hz) components 

remained. The increasing PSD of ripples and fast ripples was 

then calculated. Finally, the labeling process was carried out 

by the normalization process. 

We detected low-frequency ripples followed by many 

higher-frequency ripples in 75%,   75%, 65%, 85%, and 75% 

of the channels of the first, second, third, fourth, and fifth 

patients, respectively. Figures 10a, 10b, 11a, 11b, 12a, and 

12b show the graphs obtained using broadband EEG 

segments representing HFOs in power spectral analysis using 

the criteria described in the methods (see Section 2.6). 

Figures 10a, 11a, and 12a shows how the HFO starts as a low-

frequency swing (indicated as *) that turns into a much 

higher-frequency swing (indicated as **). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, in Figures, 10b, 11b, and 12b, a much higher 

frequency ripple is not seen following the low-frequency 

ripple. This proves that Figures 10a, 11a, and 12a contain 

epileptic patterns. When the amplitude ratios between the pre-

ictal and ictal signals are examined, the P3 channel was added 

because it is the common channel with an 80% amplitude 

increase. This channel was called the common channel 

because the 80% amplitude increase in all patients' preictal 

and ictal data was in the P3 channel. We chose the F4 and T3 

channels as the maximum power for all epileptic data is only 

in the delta and theta subbands. 

 

Table 3. Ripples (R) and fast ripples (FRs) in Fp2, C4, P4, O2, and 
Pz channels for all patients 

 Fp2 C4 P4 O2 Pz 

Pat-1 R R R FRs R 

Pat-2 R R R FRs R 

Pat-3 R R R R R 

Pat-4 R R FRs R R 

Pat-5 R R R FRs R 

 

In five patients, frequency above 80 Hz was common in the 

Fp2, C4, P4, O2, and Pz channels. Table 3 shows the ripples 

and fast ripples found in these channels of five patients. In 

Fp2 and C4, ripples were present for all five patients, while 

in P4, ripples were detected for four patients and fast ripples 

for one patient. Ripples in the O2 channel were detected for 

two patients and fast ripples for three patients. 

Ripples in the Pz channel were detected in five patients. 

Ripples and fast ripples were detected in other channels, but 

they are uncommon for all patients. The frequencies of the A 

and C data sets were generally found below 80 Hz. Thus, with 

this method, these data sets were distinguished.  

In addition, we calculated the ratios of the frequency values 

between the reference electrode and all channels of these five 

patients' data to examine the frequency change between pre-

ictal and ictal data.  

Figure 12. Corresponding power spectral density to wideband ictal and pre-ictal EEG signal (P3 channel) 
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Table 4. The ratios of the frequency values of the pre-ictal and 
ictal data between the reference electrode and all channels 

  Pat-1 Pat-2 Pat-3 Pat-4 Pat-5 

 Fp1 138.8 195.45 -1100 62.4 153.7 

Fp2 109.8 81.6 109.1 81.4 200 

F3 109.7 309.5 123.07 600 116.6 

F4 100 140.8 119.3 328.5 181.05 

C3 88.57 176.19 372.2 77.3 95.4 

C4 7.6 132.7 62.06 91.6 100 

P3 115.5 112.5 101.4 161.5 80 

P4 -100 104.5 124.1 106.7 0 

O1 125.9 -100 109.1 100 104.3 

O2 100.8 113.2 109.5 0 99.5 

F7 100 93.1 100 109.1 75 

F8 84.1 250 40.3 100 107.8 

T3 64.7 150 -600 90.2 96.4 

T4 114.2 135.3 105.9 95.4 64 

T5 100.7 106.4 112.3 76.9 76 

T6 96.03 127.8 350 103.8 75 

Fz 102 733.3 85.3 87.6 -4 

Cz 98.2 -100 145.4 100 -164 

Pz 116.6 129.05 77.5 190.6 95.7 

 

As mentioned in Section 2.6, HFOs increase during the 

transition from a seizure-free period to a seizure. As seen in 

Table 4, significant frequency changes are observed between 

the epileptic and pre-seizure signals. Thus, these frequency 

changes, usually observed as increases, indicate a 

pathological difference between the two signals. The negative 

values in Table 4 indicate a decrease in the frequency ratio, 

whereas the positive values indicate an increase in the 

frequency ratio. Thus, epileptic patterns can be detected with 

these rates, although not as much as other methods (PSD and 

HFO). The P3 channel, highlighted in this table, is the 

common channel with an   80% amplitude increase when the 

ratio between the pre-ictal and ictal signals is examined. As 

seen in Table 4, the frequency rates for five patients are 80% 

and above in this channel. This result can be used in channel 

selection studies. 

4. Conclusion 

This study deals with the methods for detecting epileptic 

seizure patterns. We determined the EEG signal subbands 

with maximum power for each signal in the A, C, and E data 

sets. It was determined by the maximum PSD method 

whether the detected subbands were pathological or non-

pathological. The total percentage figures in Table 2 show 

that we correctly detected the ictal status for all five patients. 

In addition, ripples and fast ripples were determined by 

frequency analysis of the signals. Frequencies in epileptic 

signals are generally found at 80 Hz and above. Furthermore, 

calculating the increased PSDs of ripples and fast ripples, it 

was observed that the HFO in epileptic data started as a low-

frequency ripple and then turned into a much higher-

frequency ripple. However, pre-seizure data did not show 

much higher frequency ripples following the low-frequency 

ripples. Thus, the separation of epileptic patterns from pre-

seizure patterns was also determined by this method. In ictal 

period, we detected low-frequency ripple followed by much 

higher frequency ripple in 75%, 75%, 65%, 85%, and 75% of 

all channels of the first, second, third, fourth, and fifth 

patients, respectively. For the pre-ictal data, we could not 

observe a much higher frequency ripple followed by a low-

frequency ripple in 90%, 85%, 75%, 90%, and 90% of all 

channels of the first, second, third, fourth, and fifth patients, 

respectively. Table 4 shows big frequency changes between 

the pre-seizure and seizure periods in most channels for all 

five patients. This allows us to distinguish data containing 

epileptic patterns within five patients correctly. 

In the future, these studies will be carried out to determine 

pre-ictal status with a larger data set. The aim is to create a 

communication system that automatically detects epileptic 

seizure signals for a certain period of time before the seizure 

occurs. Thus, epileptic patients can get through the seizure 

moment with the least damage by obtaining the pre-seizure 

differences of the brain signals. 
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