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Abstract 

In functional Magnetic Resonance Imaging (fMRI) studies, the variability in fMRI data, the complexity of the analysis, and 
the need to correct for multiple comparisons make determining the appropriate sample size challenging. Hence, power 
analysis becomes an important tool to use for determining the appropriate sample size needed to achieve reliable and 
statistically significant results. In this context, this study aims to represent the process of conducting a power analysis and 
estimating the sample size for an fMRI study. To do this, three functional, affective, behavioral, and cognitive, data sets 
having different experimental task designs are used. This study provides a step-by-step guide on how to conduct a power 
analysis and estimate the sample size for various fMRI studies. 
Keywords: Experimental task design, fMRI, number of participants, power analysis, sample size, statistical significance 

FMRI ÇALIŞMALARINDA GEREKLİ ÖRNEK BÜYÜKLÜĞÜNÜN PRATİK BİR 
TAHMİNİ 

Özet 

Fonksiyonel Manyetik Rezonans Görüntüleme (fMRI) çalışmalarında, fMRI verilerindeki değişkenlik, analizin karmaşıklığı 
ve çoklu karşılaştırmalar için düzeltme ihtiyacı, uygun örneklem büyüklüğünü belirlemeyi zorlaştırır. Bu nedenle, güç 
analizi, güvenilir ve istatistiksel olarak anlamlı sonuçlar elde etmek için gereken uygun örneklem büyüklüğünü belirlemek 
için kullanılan önemli bir araç haline gelir. Bu bağlamda, bu çalışma, bir fMRI çalışması için güç analizi yapma ve örneklem 
büyüklüğünü tahmin etme sürecini temsil etmeyi amaçlamaktadır. Bunu yapmak için, farklı deneysel görev tasarımlarına 
sahip işlevsel, duyuşsal, davranışsal ve bilişsel üç veri seti kullanılır. Bu çalışma, güç analizinin nasıl yürütüleceğine ve çeşitli 
fMRI çalışmaları için örneklem boyutunun nasıl tahmin edileceğine ilişkin adım adım bir kılavuz sağlar.  
Anahtar Kelimeler: Deneysel ödev tasarımı, fMRI, katılımcı sayısı, güç analizi, örneklem büyüklüğü, istatistiksel anlamlılık 
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1.  Introduction 

With the rapid development of brain imaging tools in the 
last decades, there have been great developments in 
brain studies. The most effective imaging method is 
magnetic resonance imaging (MRI), which is a non-
invasive method, does not contain radiation, and has high 
resolution. Thanks to MRI, a detailed structural 
examination of the brain is possible. Thus, it provides 
important information on issues such as making critical 
decisions before surgery, understanding the effects of 
diseases and drugs on the structure of the brain, and 
monitoring the healing process [1]. Moreover, functional 
MRI (fMRI), which is a modulation of MRI, can 
understand the working mechanism of the brain. 
Questions such as which stimuli create activation in 
which part of the brain, which areas work together, and 
which part is responsible for which function have been 

answered by fMRI studies. Researches based on such 
questions can light the neuroscience of the brain [2]. 

However, performing fMRI studies is challenging in many 
ways, including technical difficulties, data complexity, 
participant recruitment, ethics and safety, cost, and data 
interpretation [3]. The high cost of an fMRI scan can limit 
the number of participants included in the study, as well 
as cannot to be repeated the same scan many times. Thus, 
estimating the sample size (i.e. the number of 
participants) becomes an important step in planning 
such research [4]. Another challenge is the complexity of 
the fMRI data, which can make it difficult to estimate the 
effect size and variability. Additionally, the heterogeneity 
of the fMRI data can make it challenging to determine the 
appropriate statistical methods to use for sample size 
estimation. In this context, the sample size of the study 
should be determined optimally so that it should be 
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statistically significant and large enough to generalize to 
a population, but not so large as to be prohibitively 
expensive or time-consuming. To overcome this issue, 
there are methods available, such as power analysis, to 
compute the sample sizes for an fMRI experiment, 
estimating the mixture distribution of null and active 
peaks [5], [6]. 

The power analysis in the research process helps to 
determine the appropriate sample size needed to detect 
a statistically significant effect with sufficient power. The 
level of power required depends on factors such as the 
effect size, alpha level (i.e., significance level), and type of 
statistical test. In this manner, [7] indicates the 
importance of power analysis and take attention to the 
well-established, reliable neuroscientific methodologies. 
In parallel, [7] and [8] points out the high correlations 
despite the low statistical power of the studies. The 
results presented with low power are more unlikely to be 
reflect the true effect and not reproducible. Thus,  
researchers strictly recommend to conduct the power 
analysis even before the fMRI data acquisition and report 
the parameters and results of power analysis in their 
study [9]–[11]. To summarize, the use of power analysis 
for estimating sample size in fMRI studies is an important 
step for ensuring reliable and statistically significant 
results. 

In this study, the required sample size for fMRI data sets 
with different characteristics was examined. Statistically 
significant and generalizable numbers of participants, 
suitable for the characteristics of each stimulus and 
experiment, were investigated. Thus, it is aimed to be a 
guiding analysis of the number of participants to be 
included in group fMRI studies.  

2.  Conducting Power Analysis 

2.1. Challenges and Advantages of Power Analysis 

Conducting fMRI research can be difficult due to various 
reasons. (i) Technical: One of the main challenges is the 
limitations of the tool itself, since it requires 
sophisticated equipment, such as the MRI scanner, and 
specialized software and hardware for data acquisition 
and analysis. This can make it challenging to set up and 
conduct studies, particularly in low-resource settings.  

(ii) Data complexity: fMRI data is complex and multi-
dimensional, and requires specialized expertise in 
neuroimaging analysis to interpret and analyze. This can 
be time-consuming and require extensive training and 
experience. Additionally, fMRI studies are becoming 
harder to reproduce due to the development of more 
complex paradigms and the variety of analysis 
techniques available [12].  

(iii) Participant recruitment: Recruiting participants for 
fMRI studies can be challenging, particularly for studies 
that require specific clinical or demographic 
characteristics. This can limit the generalizability of the 
study results.  

(iv) Ethics and safety: fMRI studies involve exposing 
participants to the strong magnetic fields and radio 

waves of the MRI scanner, which can cause discomfort or 
even harm in rare cases. Ensuring participant safety and 
obtaining informed consent can be challenging.  

(v) Cost: fMRI studies can be expensive to conduct, 
particularly in high-resource settings, which can limit the 
sample size.  

(vi) Data interpretation: The interpretation of fMRI data 
requires expertise in both neuroimaging and the specific 
research domain being investigated. This can be 
challenging, particularly for studies that involve complex 
cognitive or behavioral tasks.  

(vi) Reproducibility: fMRI studies can be difficult to 
reproduce due to the complexity of the data and the 
specialized equipment and expertise required. This can 
limit the generalizability of the study results and make it 
difficult to build on previous research. 

Apart from the abovementioned challenges, another 
challenge is the lack of reporting of sample size 
calculations in fMRI studies, which can limit researchers 
running power analyses for new studies  [13], [14]. 
Additionally, the estimation of effect size and variance 
components is required for sample size calculations, but 
these estimates are often not reported in fMRI studies 
[13]. 

In this context, power analysis is crucial for the validity 
of the fMRI results. It prevents the issue of low statistical 
power, which decreases the chance of detecting a true 
effect. In other words, the least replicable findings will 
have the lowest power. On the other hand, conducting a 
power analysis and estimating the adequate sample size 
as an a priori step in an fMRI study has several other 
benefits: (i) More accurate results: By estimating the 
required sample size before conducting the study, 
researchers can ensure that the study is adequately 
powered to detect the effects of interest. This can 
improve the accuracy and reliability of the results.  

(ii) Efficient resource allocation: can help researchers 
allocate their resources more efficiently, the duration of 
the study, and the required equipment and personnel. 
(iii) Reduced risk of false positives or negatives: 
Adequately powered studies reduce the risk of false 
positives or negatives, as they can detect small but 
meaningful effects while avoiding over-detection of 
effects that may not be clinically or scientifically relevant. 
(iv) Increased transparency: Conducting a power analysis 
and reporting the estimated sample size in the study 
protocol increases the transparency of the study design 
and helps to promote scientific rigor and reproducibility. 
(v)Better study planning: researchers can plan their study 
more effectively, such as determining the appropriate 
statistical analysis methods and identifying potential 
limitations and sources of error. 

2.2. Power Analysis Steps 

Statistical power in fMRI studies refers to the ability to 
detect an effect when present. It is the probability of 
correctly rejecting the null hypothesis, which means 
concluding that an effect exists when it truly does. The 
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traditional null-hypothesis statistical testing (NHST) 
framework defines statistical power as the probability of 
correctly rejecting the null hypothesis. The aim is to 
achieve a power of 80% or higher, which means that if 
the study were repeated 100 times, it would be detected 
in 80 of the studies [5], [6], [15]. 

The power analysis for fMRI data involves some 
sequential steps. The flow chart of the process steps is 
given in Figure 1.  

i. Obtaining the sample data: The sample data can supply 
in several ways: Pilot study, expert opinion, simulation 
studies (i.e. synthetic data), meta-analysis or with 
searching prior studies in the same research area.  

ii. Defining a region of interest (ROI): ROI selection specify 
the brain area and leads the accurate results. 

iii. Determine the effect size: It is a measure of the strength 
of the relationship between the independent variable 
and the dependent variable in the study. In fMRI studies, 
the effect size can be estimated based on prior studies, 
pilot data, or literature review. 

iv. Choose a statistical test: Different statistical tests have 
different assumptions and power characteristics. In fMRI 
studies, common statistical tests include t-tests, ANOVA, 
and regression analysis. The choice of the statistical test 
depends on the research question and experimental 
design. 

v. Choose the alpha level: This is the significance level, 
which is the probability of rejecting the null hypothesis 

when it is true. The commonly used alpha level is 0.05, 
which means that there is a 5% chance of rejecting the 
null hypothesis.  

vi. Determine the sample size: The sample size needed to 
reach a certain level of power depends on the effect size, 
alpha level, and the statistical test. A power analysis 
software package, such as NeuroPower, G*Power, FSL's 
randomize, or AFNI's 3dClustSim can be used to 
determine the adequate sample size to reach a desired 
level of power. 

vii. Run the power analysis: Once the effect size, statistical 
test, alpha level, and sample size are determined, a power 
analysis can be run to estimate the power of the study. 
viii. Adjust the sample size: If the estimated power is too 
low, the sample size can be adjusted to achieve a desired 
level of power. Alternatively, the effect size or alpha level 
can be adjusted to achieve a desired level of power. When 
the power is at the desired level, then the main study can 
be conducted with the determined sample size. 

It should be also keep in mind that the other factors also 
affect power, such as variability and study design and 
these issues should be considered in the analysis [16]. 

3.  Method 

3.1. fMRI Data  

This study, it is aimed to explore the sample size for 
different fMRI tasks. In this context, the analyses are run 
with using three diverse tasks: cognitive, behavioral, and 
affective functional data [17].  All fMRI data were 
acquired from healthy participants. All fMRI procedures 
were approved by the ethical committee of Ege 
University. Here, the cognitive task is stimulated by a 
memory-related task, the behavioral task is stimulated 
by a motor-related task, and the affective task is 
stimulated by an emotion-based task. Thus, each task has 
its own characteristics and may require different 
numbers of participants for group analysis. The details of 
each tasks and functional data structures can be reached 
through [17]. 

Before conducting the power analysis, the preprocessing 
of each functional data was done with the Statistical 
Parametric Maps (SPM) tool [18], which runs on the 
MatLab platform. A standard preprocessing procedure 
was followed, including the steps of realignment, slice 
timing, co-registration, segmentation, normalization, and 
smoothing. Finally, according to the research hypothesis 
of each task, the related ROIs are determined by the 
specialists, and ROI masks were generated with the WFU 
Pick Atlas. 

                      
 
Figure 1. The flow chart of the power analysis process 
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3.2. Running Power Analysis 

First, for each pilot data set, the statistical parametric 
maps were generated for a given sample (pilot) size by 
carrying out the first-level analysis on SPM. These maps 
represent the effect of individual analysis for each 
participant in the pilot study. After that, a sub-sample of 
10 subjects was taken for each fMRI task to constitute the 
pilot group, and the second-level (group-wise) analyses 
were also performed. These analyses resulted in the 
statistical T-maps. With these maps, the power of the 
population was calculated and looked for the percentage 
of the peaks, and p-values, whether they show any 
activation in predetermined ROIs or not. An example of a 
statistical T-map is presented in Figure 2. 

 

The power analyses were run using NeuroPower [19], 
which is an open toolbox used to perform this kind of 
calculation for fMRI tasks. The first step starts with the 
loading of the calculated statistical T-maps. In the next 
step, the generated ROI masks also can be selected, 
optionally. It may be beneficial to focus on the a-priori 
ROI rather than calculating whole-brain analysis. The 
next step is to insert the design specifications, which are 
unique for each task. The design specifications of a 
sample fMRI data set are given in Figure 3. 

Here, the screening threshold can be determined as 
p<0.001 (uncorrected), p<0.05 for family-wise error 
(FEW) (corrected), or any desired value. The value for 
the subject number that the group map represent 
indicates the size of the pilot group (n=10). Afterward, 
the statistical test should be determined due to the 
different statistical tests have different assumptions and 
power characteristics. In this study, all data sets require 
a one-sample t-test at this step. Then, the significance 
level (alpha level) to be obtained from the results must 
be entered. Typically, it is used as 0.05. Finally, the 
special information for the functional data should be 
determined, including the smoothness level (the width of 
the Gaussian kernel) and the voxel size of the functional 
image in mm. In this study, all functional data were 
smoothed with an 8-mm Gaussian kernel and each image 
has a 3x3x3 mm voxel size. 

 
 

Figure 3. Importing the design specifications of the 
fMRI task 

 
(a) 

 
(b) 

Figure 2. Active regions on the statistical T-map, 
which is acquired after the first and second level 

analysis using SPM (a) glass-brain display (b) 
canonical display 
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4.  Results 

After importing the design specifications, the datasets 
were examined according to the local maxima. It gives 
the distribution of null and active peaks on functional 
data. Let’s denote the active peaks as 𝑍𝑢 , which indicates 
the peaks above the determined monitoring threshold 𝑢. 
For the null hypothesis, i.e. non-active voxels (𝑍𝑢′), has 

an exponential distribution with 𝑎𝑣𝑔(
𝑢+1

𝑢
) for the 

threshold 𝑢, which is given in Equation (1) [20]. 

 

𝑓(𝑧𝑢′
|𝐻𝑜 , 𝑍𝑢′

≥ 𝑢) = 𝑢 ∗ 𝑒(−𝑢(𝑧𝑢′
−𝑢)) (1) 

 

Furthermore, the total distribution of peak heights can be 
denoted with the mixture distribution, given in Equation 
(2) below. 

 

𝑓(𝑧𝑢′
|𝜋𝑜 , 𝜇1, 𝜎1, 𝑍𝑢′

≥ 𝑢)

= (1 − 𝜋1)𝑓(𝑧𝑢′
|𝐻0, 𝑍𝑢′

≥ 𝑢)

+ 𝜋1𝑓(𝑧𝑢′
|(𝐻1, 𝜇1, 𝜎1, 𝑍𝑢′

≥ 𝑢) 

(2) 

 

Here, 𝜋1 denotes the proportion of true positive peaks 
among all peaks above 𝑢, and 𝜇1 and 𝜎1 denotes the mean 
and standard deviation, sequentially. The resulting 
graphics for the distribution of active peaks for 

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

 

Figure 4. The distribution of the active peaks in each 
functional data set (a) Affective (b) Cognitive  
(c) Behavioral task design 

 
(a) 

 
(b) 

 
(c) 

Figure 5. The estimated power analysis with the 
multiple comparison procedure (a)Affective 

(b)Cognitive (c) Behavioral data 
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behavioral, cognitive and affective data sets are given in 
Figure 4.  

According to the distribution of the peaks, the results of 
the power analysis were exhibited with multiple 
comparison procedures (MCP). The results were carried 
with Bonferroni, Benjamini-Hochberg, Random Field 
Theory (RFT) statistical procedures, and uncorrected 
(default output) to control the False Discovery Rate 
(FDR) in multiple hypothesis testing [21], [22]. The 
Bonferroni correction is based on the Family Wise Error 
Rate (FWER), which is the probability of making at least 
one false discovery among all the tests. The Benjamini-
Hochberg method is a modified Bonferroni correction, 
which is the expected proportion of false discoveries 
among all the rejected hypotheses. The Benjamini-
Hochberg method has more power to detect true 
positives than the Bonferroni correction. On the other 
hand, RFT is a method used to correct for multiple 
comparisons in neuroimaging data by taking into 
account the spatial correlation between voxels. It 
assumes that the data are a discretization of a continuous 
random field with a certain smoothness and uses the 
Euler characteristic to threshold the image at a certain 
level to identify clusters of significant voxels [23]. 

For each data set, the parameters were set as threshold 
(𝑢 = 0.01), alpha-level 𝛼 = 0.05, the number of pilot 
subgroup 𝑛 = 10, 8𝑥8𝑥8 𝑚𝑚 for smoothing kernel and 
3𝑥3𝑥3 𝑚𝑚 for voxel size. The results of the power 
analysis according to each methodology are given in 
Figure 5. The intersection of the average power and 
power curves gives the required number of participants 

to reach the desired power in the main study. According 
to Figure 5, if we aim to reach 80% power, the affective 
fMRI task requires 12 subjects, cognitive data requires 13 
and behavioral data requires 25 subjects for Benjamini-
Hochberg error rate control. On the other hand, if we 
have a certain number of participants, it is also possible 
to know the power rate predictions with these graphics, 
as well. Furthermore, the detailed table for all possible 
sample sizes for the various correction methods is given 
in Table 1 for affective and cognitive functional data, and 
in Table 2 for the behavioral functional data. 

When evaluating Table 1 and Table 2, it is also worth 
mentioning the low power with the small sample size. 
The low statistical power indicates a reduced likelihood 
of identifying effects that are true in reality. The studies 
with low power tend to yield a high number of false 
negatives compared to the studies with high power. For 
example, if a study has a design with a power of 10%, it 
signifies that the study is expected to find only 10 true 
effects among the existing 100 non-null effects. In 
addition to this, it is also reported that the low power is 
related to the other additional biases, such as publication 
bias. Thus, these factors result in the low reliability of the 
acquired results in studies with low power [7]. 

 

 

 

 

 

 

 

Table 1. Sample sizes with the estimated power analysis for affective and cognitive data sets. 

Sample 
Size 

Bonferonni Benjamini-Hochberg Random Field Theory Uncorrected 

Affective Cognitive Affective Cognitive Affective Cognitive Affective Cognitive 

10 .11 .05 .70 .63 .20 .21 .79 .88 

11 .15 .08 .77 .70 .25 .27 .84 .91 

12 .20 .11 .82 .76 .32 .33 .88 .94 

13 .26 .14 .86 .81 .38 .40 .91 .95 

14 .31 .18 .89 .85 .45 .46 .93 .97 

15 .38 .23 .92 .88 .52 .53 .95 .98 

16 .44 .28 .94 .91 .58 .59 .97 .99 

17 .50 .33 .96 .93 .64 .65 .98 .99 

18 .56 .38 .97 .95 .70 .70 .98 1.0 

19 .62 .44 .98 .96 .75 .75 .99 1.0 

20 .67 .50 .99 .97 .79 .79 .99 1.0 

21 .72 .55 .99 .98 .83 .82 .99 1.0 

22 .77 .60 .99 .99 .86 .86 1.0 1.0 

23 .81 .65 1.0 .99 .89 .88 1.0 1.0 

24 .84 .69 1.0 .99 .91 .91 1.0 1.0 

25 .87 .74 1.0 .99 .93 .93 1.0 1.0 

26 .90 .77 1.0 1.0 .95 .94 1.0 1.0 

27 .92 .81 1.0 1.0 .96 .95 1.0 1.0 

28 .93 .84 1.0 1.0 .97 .96 1.0 1.0 

29 .95 .87 1.0 1.0 .98 .98 1.0 1.0 

30 .96 .89 1.0 1.0 .98 .98 1.0 1.0 
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Table 2. Sample sizes with the estimated power analysis for behavioral data set. 

 

5. Conclusion 

Power analysis is an important step in fMRI studies since 
it helps to constitute the appropriate number of 
participants to detect a significant effect with a desired 
level of statistical power. This is crucial to validate the 
study has enough statistical power and thus can avoid to 
deal negatives. Power analysis can also help to optimize 
the experimental functional task design besides the 
wasting resources. However, in a neuroimaging research 
study put forward that only 3% of the studies conducted 
the power calculations [14]. They reported that it results 
with missing information in the fMRI trials, 
underpowered results, and false negative outcomes. 

In this context, in this study it was aimed to explore the 
sample size for different fMRI tasks. In this context, the 
analyses were run with using three diverse tasks: 
cognitive, behavioral, and affective functional data. The 
results indicated that on average, a sample size of 20 
participants is needed to achieve a power of 80%, with 
an alpha level of 0.05, however it may change according 
to the nature of the functional task design. It is also 
correlated with the findings in a study, which is analyzed 
among popular fMRI studies. The results of it indicated 
that highly cited fMRI studies had a median sample size 
of 12 participants, most of the fMRI studies has a sample 
size of 14.5 participants on average, and these numbers 
are increasing at a rate of 0.74 participant per year [14]. 

Here, an important point of note is the significant 
absence of utilization of fMRI-tailored methods for 
calculating statistical power. Despite the availability of 
these procedures for a while [5], [6], [24], it seems that 

their application might be perceived as highly complex. 
Researchers might not have been introduced to these 
techniques, or perhaps, the incorporation of these 
methods might not have been deemed a sufficiently 
crucial aspect to warrant dedicated effort. The 
calculations of statistical power primarily center around 
singular t-tests and correlation examinations. It's 
probable that these calculations overly estimate 
statistical power due to their failure to account for any 
form of multiple-testing correction. Another possible 
approach may be using meta-analyses. Although the 
meta-analyses give a good estimation about the effect 
size, on the other hand, the challenges of conducting such 
an analysis limit its use. 

As summary, it is obvious that power analysis is a critical 
step in planning and fMRI study. In the light of the 
findings, it is strongly suggested that researchers should 
conduct a power analysis, consider the effect size, 
statistical test, and alpha level while determining the 
appropriate sample size for an fMRI study. 
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