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NEURODESIGN OF LOG-PERIODIC DIPOLE ARRA YS
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ABSTRA CT: The ıksign of log-periodic dipole arrays, hased on anificial ııeural
nel-Hvrks, is presenled. The extended-deüa-bar-delta algorithm ıs ıısed to train the

ııelıvorks. The desigı-ı resııüs obtained by using Ihe murat models are in very good
agreemunt wilh the resıılts avaitable in Ihe literalure.
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LOG-PERÎYODÎK DİPOL DÎZÎLERİN NÖRAL TASARIMI

ÖZET: Yapay sınır ağiarım dayanan bir metot, log-periyodik dmlermm tasarımı için
^liim/mıiftıır. Ağları eğitmek, için, genişlelilmif della-bar-della algoritması
/ıııllaııılnn. flır. Nöral modeller kullamlarak elde edilen tasarım sonuçları, literatürdeki
mevcut sonuçlarla ııyvmluhık içindedir.
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/. INTRODUCTION

The log-periodic dipole arrays have been well-known in the literature [1-3] for its broad

bandwidth capability. This wîde band operation is achieved by different groups of

elementi radiating at different frequeneies, The spacing betu'een the elements is

proportional to their İength and the system is fed using a transmİssion line. As the

frequency ratio varies, the elements that are at or near resonance, coııple energy from

the transmission line. The resulting radiation pattern is directional and has a broadly

constant radiation characteristics över the fiili operating frequency range. The general

configuration of a log-periodic dipole array is described in terms of the design

parameters: the spacing factor o, the scale factor T, and the angle a.

The most important log-periodic dipole array design procedure that meets giyen

specifıcations has been presemed by Carrel [3]. As a design aid, the directivity contour

cun/es as a functİon of T for various values of o and the graphs of the relative

characteristic impedance of a feeder line as a fünction of relative characteristıc

impedance ofdipole element were also glven İn [3], However, these deslgn curves are

not usable for computer aided design (CAD) and practical usage of engineering

applications. For this reason, in thİs work, the optimum values of a and '[ for a given

directivity and the reîative characterİstıc impedance of a feeder !ine as a function of

relative characteristtc İmpedance of a dipole element for various values ofrelative mean

spacings o' are obtainecİ by using a sİmple method based on artifıcial neural networks

(ANNs). After obtaıning these parameters, the desİgn of log-periodic dipole arrays is

very easy.

ANNs [4-5] are developed fi-om neurophysiology by morphologically and

computationally mimicking human brains. Although the precise operation details of

artificial neural netu'orks are quite difi'erent from human brains, they are similar in three

aspects: they consist of a very large number ofprocessing elements (the neurons), each

neuron connects to a îarge number ofother neurons, and the fünctionalİty ofnetworks is

determined by modifyİng fhe strengths of connections during a leaming phase. Abilİty

and adaptabilİty to learn, generalİzability, smaller information requirement, fast real-

time operation, and ease of implementation features have made artificial neura!
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netvrorks popular in the last few years [4-22]. Because of these fascinating features,

artificia] neural networks in this article are used to design the log-periodic dipole arrays.

The extended-delta-bar-delta (EDBD) algorithm [12] is used to train the networks.

The design results obtained by using the neural models are in very good agreement with

the results reported elsewhere [1-3, 23]. The model is simple, and very usefül to antenna

engineers for accurately design of log-periodic dipole arrays. in previous works [l 5-22],

we also successfully introduced the artificial neural netv/orks to model a robot sensor,

and to compute the various parameters of the triangular, rectangular and circular

mıcrostrip antennas. in the follovving section, the design procedure of a log-periodic

dipole arrays is given. This design procedure follows the design procedure presented in
[l]

//. LOG-PERIODIC DIPOLE ARRAYS

The log periodic dipole arrays are tapered linear arrays of dipole elements of varying

lengths that operate över a wide frequency range. The geometry of a log periodic dipole
array and associated connections is shown in Fig. l. The lengths (In's), spacings (Rn's),

dıameters (d,, 's), and gap spacings at dipole centers (Sn's) are related as follows [l]

/, ^ ^ K. d. d_

/, /" R, R,, ~ d, ~ d,
s-,

.î,
(l)

where T is the scale factor. The spacing factor a is given by

Çf =
^.. -K,,

2l,,.,

The design parameters o, T, and a are related as follows

(2)

a = tan -\1-L
L^o- (3)

l
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(d) Coaxial connection

Figure l. Log-periodic dipole array and associated connections.

The designed bandwidth is

B. =fi[/./+7.7(/-T); çöl a} (4)

v/here B is the desired bandwidth. The total length ofthe array L, ftom the shortest lm,n

to the longest Inıax element, is determined by

z=T[y-i:JC0'" (5)

with

^ = 2/., » - .
rai tl

(6)

where fnıın is the lower frequency limit of desired operation, and c is the velocity of

electromagnetic waves in free space. The number ofelements can be written as

N =/+ t"(B.)

r̂

(7)
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The average characteristic impedance ofthe elements is. gıven by

Z. = 720 ln\-^-2. 25 (8)

where 1,,/dn is the length-to-diameter ratio ofthe nth element ofthe array. The center-to-

center spacing s between the two rods ofthe feeder line, each ofİdentical diameter d, İs

s = d cosh\ -
z.

\ 120
(9)

where Zo is the characteristic impedance ofthe feeder line.

in the desıgn of a log-periodic array, the directivity, input impedance, diameter of

elements offeeder lıne, and the lower and upper frequencîes ofthe desired operafion are

specİfıed. The foliowing design parameters are then found.

l) The optimum values of o and T for a given directivity are determined by using the

artifıcial neural networks.

2) a, Bs, L, ?.nux. N, and Za are determined by usmg eqns- (3)-(8).

3) Zo is calculated from the desİgn curves obtained by using artifıcial neural networks

for various values ofrelative mean spacings a' (o' = CT/T ).

4) s is found by using eqn. (9).

in this paper, the log-periodic dipole array were also designed by using a program called

LPDA which has been written by Pozar [23J. The directiviîy, the radius ofthe largest

dipole, the upper and !ower frequency limits are specifıed, and the LPDA program

computes the required number of dipoles, the dipole lengths, the dipole spacings, and

the dipole radii. Hoıvever, the o and T calculation section of the LPDA program is

deleted in this study, and the values of o and T obtained (rom artificial neural networks

are used in the LPDA program.
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in the following sections, the artificial neural netıvorks and the EDBD used in training

the netıvorks are described briefly and the application ofthe netv/orks to the design of
the log-periodic dipole arrays is then explained.

///. ARTIFICIAL NEURAL NETWORKS

Artifıcial neural networks have many structures and arehitectures [5-6]. Multilayered
perceptrons (MLPs) [4-6] are the simplest and therefore most commonly used neural

netn'ork arehitectures. They have been adapted for the design ofthe log-periodic dipole
arrays. MLPs can be trained with the use ofmany different learning algorithms [4-9, 12].
in this work, the EDBD algorithm [12J has been used for training MLP. As shon'n in
Fig 2, an MLP consists of three layers: an input layer, an output layer and an
ıntermediate or hidden layer. Processing elements (PEs) or neurons (indicated in Fig. 2
wıth the circle) in the input layer only aet as buffers for distributing the input signals x,

to PEs in the hidden layer. Each PEj in the hidden layer sums up its input signals Xj

after weighting them with the strengths ofthe respective connections wy; from the input
layer and computes its output^y as a fünction/ofthe sum, viz.

y, ---J(^j, x,) (10)

/ can be a simple threshold function, a sigmoidal or hyperbolic tangent function. The
output ofPEs in the output layer is computed similarly.

Training a network consists of adjusting weights of the network using the learning
algorithms. A learning algorithm gives the change Awjj(k) in the weıght of a connection
beıween PEs ; andy. in the following section, the EDBD learning algorithm used in this
study has been explained briefly.
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///. l. Exîended Delta-Bar-Deîta Algorithm

This algorithm is an extension of the delta-bar-delta algorithm [9] and based on

decreasing the training time for multilayered perceptrons. The use of the momentum

heuristics and avoiding the cause ofthewildjumps in the weights are the features ofthe

algorithm developed by Minai and Williams [12]. The EDBD algorithm includes a

little-used 'error recovery' feature which calculates the global error ofthe current epoch

during training [!2]. Ifthe error measured during the current epoch is greater than the

error of the previous epoch, then the network's weights reven back to the last set of

weights (the weights which produced the lower error).

However, a patience factor has been included [7] into the error recovery feature, which

may produce the betler performance of the networks through the use of this feature.

Instead oftesting the error upon every epoch, as was performed previously, the error is

now tested upon nih epoch, where n equals the patience factor. ]n (his algorithm, the

changes in weights are calculated as
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Aw(l+J)^ a(k)S(k) +^flc) Aw(k) (11)

and the weights are then found as

u'ftf l)-=ıv(k) + dw(k+J} (12)

in eqn. (l I), S(lc) is the gradient component ofthe weight change, and a(k) and fi(k} are

the learning and momentum coefficients, respectively. S(k) is employed to implement

the heuristic. for incrementing and decrementıng the learning coefficients for each

connection [9]. The n'eighted average S(k) is formed as

S, (k)--(l-ö)S(k)+6S(k-l) (13)

vvhere ö is the convex weighting factor.

The learniııg coefficienl chcınge is given as

K. np(--A \S(W\{ 8^k-I)SiJi:) > O

&a(k) = \ -<pa alk) ıf S(k-l)S(k)<0

O othenvise

(14)

where Ka is the constant leaming coefîicient scale factor, exp is the exponential

function, Oa is the constant learning coefîicient decrement factor, and ya is the constant

learning coeffıcient exponential factor. The momentum coefRcient change is also
wntten as

l'-V-(k) =

K, exp(-Y» [S.kYı) if (5(t-/)(5(, t) > O

-if^u.(k) if S(k-l)S(k)<0

O oîhenvise

(15)



27

where K^, is the constant momentum coefficient scale factor, cp^ is the constant

momentum coeffıcient decrement factor, and y^ is the constant momentum coefficient

exponential factor.

As can be seen from eqns. (14)-(15), the learning and the momentum coeffıcients have

separate constants controlling their increase and decrease. S(k) İs used whether an

increase or decrease is appropriate. The adjustment for decrease is identical in form to

that for the delta-bar-delta algorithm. Therefore, the increases in the both coeffıcients

were modifıed to be exponentıally decreasing functions of the magnitude of the

weighted gradİent components \ 5 (k)\. Thus, greater increases wiîl be applied in areas of

small slope or curvature than in areas ofhigh curvature. This is partial solution to the

jump problem, in order to take a step further to prevenî wild jumps and oscillations in

the weight space, ceilings are pîaced on the individual connection learnİng and

momentum coefficients. For this,

a(k) < an,,,

^(k) < |l,nu (16)

must be for ali connections, where anıax is the upper bound on the learning coefficient,

and f-imax is the upper bound on the momemum ccefficient.

Fİnaliy, after each epoch presentation of traİning tuples, the accumulated error is

evaluated [7]. Ifthe error E(k) İs less than the previous minimum error, the weights are

saved as fhe current best- A recovery tolerance parameter A, controİs thîs phase.

SpecİfıcaIly, ifthe current error exceeds the minimum previous error such that

E(k)>E^İ (17)

AJ1 connection weİghts revert to the stored best set ofweights in memor^r. Further, the

both coefficients are decreased to begin the recovery.
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IV. APPLICATION OF ARTIFICIAL NEURAL NETfVORKS TO THE

DESIGN OF LOG-PER10DIC D1POLE ARSA YS

The proposed method involves training two neural networks to obtain the values of a

and T for a given directivity and the relative characteristic impedance of a feeder line
(ZO/Rİ,, ) as a function of relative characteristic impedance of a dipole element (Za/Rın)

for various values ofrelative mean spacings (a'). These two neural models are shown

in Fig. 3. in Fig. 3, R,,, represents the real input impedance. in the MLP, the input and

output layers have the linear transfer fünction and the hidden layers have the tangent

hyperbolic function. Training an MLP with the use of the EDBD algorithm to compute
the o and T and Zo/R;,, involves presenting them sequentially with different input sets

and corresponding target values. Differeaces betıveen the target output and the actual

output ofthe MLP are trained through the EDBD algorithm to adapt their weights. The

adaptation is carried aut after the presentation ofeach set ofinput and output until the
calculation accuracy of the network is deemed satisfactory according to some criterion

(for example, when the root-mean-square (rms) error between the target output and the
actual output for ali the training set falls below a given threshold) or the maximum
allowable number ofepochs is reached.

Directivity NEURAL

MODEL

o

Za/Sn

NEURAL

MODEL

zo/Iîn

(a) (b)

Figure 3. Neural model far (a) a and T calculation and (b) Zo/R;» calculation.
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The training and test data sets used in this paper have been obtained from the previous
works [1-3]. A set ofrandom vılues distributed uniformly betn'een -0. 1 and +0. 1 was

used to inilialize tlıe n'eights of the netn'orks. However, the input data tuples were
scaled between -1. 0 and +1. 0 and the output data tuples n'ere alsa scaled betneen -0.8

and +0. 8 before training. After several trials, it was found that two layers network

achieved, as indicated in [10-11, 13], the task with high accuracy. The number ofthe

training and test data sets, the number of iteration for training, and the number of PEs

for the fırst and the second hidden layers are given in Table l. The seed number was

fixed to 257. Both the sequential and random procedures were used in training. The

parameters ofthe netvvorks far EDBD are: Ka=0. 095, K^O. OI, y,,=0 0, Ya-0. 0, (p, ı-0. 01,

(pa-0. 1, e-0. 7, ^1. 5.

Table î. The parameter values used for two neural modeîs.

The number ofdata sets

for trainin^
The nurnber of data sets

for testi ng
The iteration number

The numbcr ofPEs for

_the first hidden layer
The number ofPEs far
the second hidden laver

cand t

32

200. 000

ZA

52

18

250. 000

V. RESULTSAND CONCLUSIONS

in order to demonstrate the computational effort of the neural model, the test results of

AKNs far a and T far a given directivity and the (2o/R, n) as a fünc.tion of (Za/R,n) are

compared with the results of [1, 3,23] in Table 2 and Fig.4, respectively. The test results

illustrate that the perfbrmance ofthe proposed method is quite robust and precise. As

can be seen from Table 2 and Fig.4, there is excellent agreement with the data from the

method [1, 3, 23]. This excellent agreement suppons the validity of.^NN.

When the values of o and T for a given directivity and (Zo/Rin) as a fünction of(Za/R]n)

are knon'n, the other design parameters of a log-periodic dipole array can be easily
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Table 2 Comparison ofthe optimum test values of a and T for a given directivity.

Directivity
(dB)

8.5
9.0

9.5
10.0
10.5
11.0

11.5

[1, 3, 23]
o

0. 147
0. 157
0. 163
O 168
0. 172
0. 174
0. 176

0. 822
0. 865
0. 892
0. 916
0. 928
0. 940
0. 950

Present neural model

a

0, 147191
0. 156735
0. 163481
O 168053
0. 171471
0. 174181
0. 176348

0. 822133
0. 865513
0. 893879
0. 913061
0. 928242
0. 941247
0. 952376

obtained by using eqns. (1)-(9). in this work, a log-periodic dipole array in the form of
Fig. ld was designed to cover ali the VHF TV channels (starting with 54 MHz for
channel 2 and ending with 216 MHz for channel 13). The desired directivity is 9 dB and
the input impedance is 50 ohms. The elements should be made of aluminium tubing
ıvith

ZO/Rİ

-l- - - -^___}_. \^_ , |_|_. +_|_|.
ı - _"Ç. J _ L ı ı l

^\ n'=uın '\1~^^~'~'-;V-B'riuo_;^. ;.;
. \-<ı'=o. i(L_^_;_^\4.;

î.O

10

Figure 4. Comparison ofrelative characteristic impedance of a feeder line as a fünction
ofrelative characteristic impedance ofdipole element.

il
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1. 905 cm (3/4 in. ) outside diameter for the largest element and the feeder line and 0. 48

cm for the smallest element. These design specifications are chosen the same as those of

[l] for comparison. The results obtained by using the step-by-step design procedure

given in Section 2 are compared with the results of [l] in Table 3. it is clear &om Table

3 that the results ofANN are in very good agreement with the results of [l).

Table 3. Comparison ofthe desiga parameter values of a log-periodic dipole array.

a(°)
B,
-^»(m)
L (m)
N

Z. (Q)
Z./R,,

Z, tf2)
S (cm)

IİL
0. 157
0. 865

12, 13213

7. 011224
5. 555556

5. 539397

14. 42873

(14 or 15 element)
0. 1688074

327. 8807

6. 557615
60. 00

2, 148127

Present neural model

0. 156735

0. 865513

12. 10722

7, 000001
5. 555556

5. 549253

14.46971
(Hor 15 element)

0. 1684726
327. 8807

6.557615
60. 01

2. 148141

in this paper, fhe log-periodic array was also designed by using a program called LPDA

which has been written by Pozar [23]. The specifications ofthe second design example

are that the lower frequency is 54 MHz, the upper freguency is 216 MHz, the desired

directivity is 8. 5 dB and the radius of the largest dipole is l cm. These design

specifications are the same as those of [23]. First, the values of a and T are obtained

from the artificİal neural networks. The requİred number ofdipoles, the dipole lengths,

the dipole spacings, and the dipole radii are then obtained by using the LPDA program.

The results ofANN are compared vvith the results of [23] in Table 4. The geometry of

this log periodic dipole array is also showc in Fig. 5. The spacings are measured from

the current dipole to the previous dipole, so the spacing ofthe first dipole is taken as

zero. it is seen from the Table 4 that the results of ANN are in very good agreement

with the results of [23]. The two design examples given here support the validity of

ANNs.
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Present neuraJ model ]S
Dipole Spacing

(m)
Length

(m)
Radius

(m)
Spacing

(m)
Length

(m)
Radius

(m)
0. 0000 2. 6476 0. 0100 0. 0000 26476 0. 0100
0. 7794 2. 1767 0. 0078 0. 7784 2. 1763 0. 0078
0. 6408 1. 7895 0. 0064 0. 6398 0. 0064
0. 5268 1. 4712 0. 0053 0. 5259 1. 4705 0. 0053
0. 4331 1. 2095 0. 0044 0. 4323 1. 2088 0. 0044
0. 3561 0. 9944 0. 0036 0.3554 0.9936 0. 0036
0. 2927 0. 8175 0. 0029 0. 2921 0. 8167 0.0029
0. 2407 06721 0. 0024 0. 2401 0. 6714
0. 1979 0. 5526 0. 0020 0. 1974 0. 5519

0. 0024
0. 0020

0. 147191 0. 147

0. 822133 0. 822

Figure 5. Geometry ofalog-periodic dipole array.

in this work, the different learning algorithms such as the backpropagation, the delta-
bar-delta, and the quick propagation were also used to train the networks. Hoıvever. the

best results was obtained from the EDBD. For this reason, only the results of the
EDBD n'ere given in this paper. in previous our work [21], the best bandwidth results
ofmicrostrip antennas were also obtained by using the EDBD.
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A distİnct advantage of neural computation is that, after proper trainlng, a neural

network completely bypasses the repeated use of complex iterative processes for new

cases presented to it. Far engineering applications, the simple models are ver>' usable.

Thus the neural model given in this work can also be used for many engineering
applications and purposes.
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