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NEURODESIGN OF LOG-PERIODIC DIPOLE ARRAYS

Kerim GUNEY', Mehmet ERLER', Seref SAGIROGLU?

ABSTRACT: The design of log-periodic dipole arrays, based on artificial neural
networks, is presented. The extended-delta-bar-delta algorithm is used fo train the
networks. The design results obtained by using the neural models are in very good

agreement with the results available in the literature.
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LOG-PERIYODIK DIPOL DIZILERIN NORAL TASARIMI

OZET: Yapay sinir aglarina dayanan bir metor, log-perivodik dizilerinin tasarmmi icin
sunulmustur. — Aglart  egimmek igin,  genisletilmis  delta-bar-delta algoritmast
kullanidmistir. Noral modeller kullamilarak eide edilen tasarim sonuglari, literatiirdeki

meveut sonuglarla uyumlnlik icindedir.
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L INTRODUCTION

The log-periodic dipole arrays have been well-known in the literature [1-3] for its broad
bandwidth capability. This wide band operation is achieved by different groups of
elements radiating at different frequencies. The spacing between the elements is
proportional to their length and the system is fed using a transmission line. As the
frequency ratio varies, the elements that are at or near resonance, couple energy from
the transmission line. The resulting radiation pattern is directional and has a broadly
constant radiation characteristics over the full operating frequency range. The general
configuration of a log-periodic dipole array is described in terms of the design

parameters: the spacing factor , the scale factor 7, and the angle a.

The most important log-periodic dipole array design procedure that meets given
specifications has been presented by Carrel [3]. As a design aid, the directivity contour
curves as a function of 1 for various values of ¢ and the graphs of the relative
characteristic impedance of a feeder line as a function of relative characteristic
impedance of dipole element were also given in [3]. However, these design curves are
not usable for computer aided design (CAD) and practical usage of engineering
applications. For this reason, in this work, the optimum values of ¢ and 1 for a given
directivity and the relative characteristic impedance of a feeder line as a function of
relative characteristic impedance of a dipole element for various values of relative mean
spacings o' are obtained by using a simple method based on artificial neural networks
(ANNSs). After obtaining these parameters, the design of log-periodic dipole arrays is

VEry asy.

ANNs [4-5] are developed from neurophysiology by morphologically and
computationally mimicking human brains. Although the precise operation details of
artificial neural networks are quite different from human brains, they are similar in three
aspects: they consist of a very large number of processing elements (the neurons), each
neuron connects to a large number of other neurons, and the functionality of networks is
determined by modifying the strengths of connections during a learning phase. Ability
and adaptability to learn, generalizability, smaller information requirement, fast real-

time operation, and ease of implementation features have made artificial neural
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networks popular in the last few years [4-22]. Because of these fascinating features,
artificial neural networks in this article are used to design the log-periodic dipole arrays.

The extended-delta-bar-delta (EDBD) algorithm [12] is used to train the networks.

The design results obtained by using the neural models are in very good agreement with
the results reported elsewhere [1-3, 23]. The model is simple, and very useful to antenna
engineers for accurately design of log-periodic dipole arrays. In previous works [15-22],
we also successfully introduced the artificial neural networks to model a robot sensor,
and to compute the various parameters of the triangular, rectangular and circular
microstrip antennas. In the following section, the design procedure of a log-periodic

dipole arrays is given. This design procedure follows the design procedure presented in

[1].

If. LOG-PERIODIC DIPOLE ARRAYS

The log periodic dipole arrays are tapered linear arrays of dipole elements of varying
lengths that operate over a wide frequency range. The geometry of a log periodic dipole
array and associated connections is shown in Fig. 1. The lengths (l,’s), spacings (R,’s),

diameters (d.’s), and gap spacings at dipole centers (s,’s) are related as follows [1]

_{_iégéf__ﬁ_lemr _E'i_dn-».' _ 52 S (1)

The design parameters o, 1, and o are related as follows

JTi-z
a = fan L 5 3)
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(d) Coaxial connection

Figure 1. Log-periodic dipole array and associated connections.

The designed bandwidth is
B, = B11+7.7(1~ ) cot a] ©

where B is the desired bandwidth. The total length of the array L, from the shortest Inin

to the longest Ly, element, is determined by

A 1
= ";‘ L]— —B;) cota (5)
with
=2 = — 6)
/Lﬂ':in' = may =
frm'u

where i, is the lower frequency limit of desired operation, and c is the velocity of

electromagnetic waves in free space. The number of elements can be written as

(7
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The average characteristic impedance of the elements is. given by
i ]
Z, =120 2| - 2.25J (8)

where 1,/d, is the length-to-diameter ratio of the nt# element of the array. The center-to-

center spacing s between the two rods of the feeder line, each of identical diameter d, is

(z
s=d cosh‘k 1 ; )

where Z; is the characteristic impedance of the feeder line.

In the design of a log-periodic array, the directivity, input impedance, diameter of
elements of feeder line, and the lower and upper frequencies of the desired operation are

specified. The following design parameters are then found.

1) The optimum values of ¢ and 1 for a given directivity are determined by using the
artificial neural networks.

2) o, B, L, Anax. N, and Z, are determined by using eqns. (3)-(8).

3) Z, is calculated from the design curves obtained by using artificial neural networks
for various values of relative mean spacings 6 (o' =o/1"").

4) s is found by using eqn. (9).

In this paper, the log-periodic dipole array were also designed by using a program called
LPDA which has been written by Pozar [23]. The directivity, the radius of the largest
dipole, the upper and lower frequency limits are specified, and the LPDA program
computes the required number of dipoles, the dipole lengths, the dipole spacings, and
the dipole radii. However, the ¢ and 1 calculation section of the LPDA program is

deleted in this study, and the values of o and 7 obtained from artificial neural networks

are used in the LPDA program.
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In the following sections, the artificial neural networks and the EDBD used in training
the networks are described briefly and the application of the networks to the design of

the log-periodic dipole arrays is then explained.

I ARTIFICIAL NEURAL NETWORKS

Artificial neural networks have many structures and architectures [5-6]. Multilayered
perceptrons (MLPs) [4-6] are the simplest and therefore most commonly used neural
network architectures. They have been adapted for the design of the log-periodic dipole
arrays. MLPs can be trained with the use of many different learning algorithms [4-9,12].
In this work, the EDBD algorithm [12] has been used for training MLP. As shown in
Fig. 2, an MLP consists of three layers: an input layer, an output layer and an
intermediate or hidden layer. Processing elements (PEs) or neurons (indicated in Fig. 2
with the circle) in the input layer only act as buffers for distributing the input signals x;
to PEs in the hidden layer. Each PE j in the hidden layer sums up its input signals x;

after weighting them with the strengths of the respective connections wj;j from the input

layer and computes its output yj as a function f of the sum, viz,

}‘j‘ . ﬂlz H’jl' x,-) (] O)

S can be a simple threshold function, a sigmoidal or hyperbolic tangent function. The

output of PEs in the output layer is computed similarly.

Training a network consists of adjusting weights of the network using the learning
algorithms. A learning algorithm gives the change Aw;i(k) in the weight of a connection
between PEs 7 and ;. In the following section, the EDBD learning algorithm used in this

study has been explained briefly.
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Figure 2. General form of neural networks.

II1.1. Extended Delta-Bar-Delta Algorithm

This algorithm is an extension of the delta-bar-delta algorithm [9] and based on
decreasing the training time for multilayered perceptrons. The use of the momentum
keuristics and avoiding the cause of the wild jumps in the weights are the features of the
algorithm developed by Minai and Williams [12]. The EDBD algorithm includes a
little-used ‘error recovery’ feature which calculates the global error of the current epoch
during training [12] If the error measured during the current epoch is greater than the
error of the previous epoch, then the network’s weights revert back to the last set of

weights (the weights which produced the lower error),

However, a patience factor has been included [7] into the error recovery feature, which
may produce the better performance of the networks through the use of this feature.
Instead of testing the error upon every epoch, as was performed previously, the error is
now tested upon nrh epoch, where n equals the patience factor. In this algorithm, the

changes in weights are calculated as
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Awk+1)= arki&k) + k) Awk) an
and the weights are then found as
wikt1)=w(k) + Aw(k=1) (12)

In eqn. (11), &rk) is the gradient component of the weight change, and afk) and k) are

the learning and momentum coefficients, respectively. &%) is employed to implement
the heuristic for incrementing and decrementing the learning coefficients for each

connection [9]. The weighted average B"(k) is formed as

8 (k)=(1-0)&k)+ 0 5(k-1) (13)

where @ 1is the convex weighting factor.

The learning coefficient change is given as
ke el (6B I SR> 0
Aark) = {ﬂpu a(k) if Ok-1)0k) <0 (14)

0 otherwise

where k. is the constant learning coefficient scale factor, exp is the exponential
function, o, is the constant learning coefficient decrement factor, and y,, is the constant
learning coefficient exponential factor. The momentum coefficient change is also

written as

Ku exp(f (G0 if k1)) >0
AR(k )= 5=, u(k) if Sk-1)8k) <0 (15)

[ 0 otherwise
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where x, is the constant momentum coefficient scale factor, o, is the constant

momentum coefficient decrement factor, and v, is the constant momentum coefficient

exponential factor.

As can be seen from eqns.(14)-(15), the learning and the momentum coefficients have
separate constants controlling their increase and decrease. &%) is used whether an
increase or decrease is appropriate. The adjustment for decrease is identical in form to
that for the delta-bar-delta algorithm. Therefore, the increases in the both coefficients
were modified to be exponentially decreasing functions of the magnitude of the
weighted gradient components |5 (k)|. Thus, greater increases will be applied in areas of
small slope or curvature than in areas of high curvature. This is partial solution to the
jump problem. In order to take a step further to prevent wild jumps and oscillations in
the weight space, ceilings are placed on the individual connection learning and

momentum coefficients. For this,

(k) < Opax

1(K) < tmax (16)

must be for all connections, where ttmax 15 the upper bound on the learning coefficient,

and pmax 18 the upper bound on the momentum cecefficient.

Finally, after each epoch presentation of training tuples, the accumulated error is
evaluated [7]. If the error E(k) is less than the previous minimum error, the weights are

saved as the current best. A recovery tolerance parameter A controls this phase,

Specifically, if the current error exceeds the minimum previous error such that

E(k) = En!in /1" (1 7)

All connection weights revert to the stored best set of weights in memory. Further, the

both coefficients are decreased to begin the recovery.
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1V. APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO THE
DESIGN OF LOG-PERIODIC DIPOLE ARRAYS

The proposed method involves training two neural networks to obtain the values of o
and t for a given directivity and the relative characteristic impedance of a feeder line
(Zo/Rin) as a function of relative characteristic impedance of a dipole element (Z,/R;,)
for various values of relative mean spacings (¢'). These two neural models are shown
in Fig. 3. In Fig. 3, R, represents the real input impedance. In the MLP, the input and
output layers have the linear transfer function and the hidden layers have the tangent
hyperbolic function. Training an MLP with the use of the EDBD algorithm to compute
the 6 and t and Z/R;, involves presenting them sequentially with different input sets
and corresponding target values. Differences between the target output and the actual
output of the MLP are trained through the EDBD algorithm to adapt their weights. The
adaptation is carried out after the presentation of each set of input and output until the
calculation accuracy of the network is deemed satisfactory according to some criterion
(for example, when the root-mean-square (rms) error between the target output and the

actual output for all the training set falls below a given threshold) or the maximum

allowable number of epochs is reached.

(2) (®)

Figure 3. Neural model for (a) o and t calculation and (b) Zo/Riq calculation.
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The training and test data sets used in this paper have been obtained from the previous
works [1-3]. A set of random values distributed uniformly between -0.1 and +0.1 was
used to initialize the weights of the networks. However, the input data tuples were
scaled between -1.0 and +1.0 and the output data tuples were also scaled between —0.8
and +0.8 before training. After several trials, it was found that two layers network
achieved, as indicated in [10-11,13], the task with high accuracy. The number of the
training and test data sets, the number of iteration for training, and the number of PEs
for the first and the second hidden layers are given in Table 1. The seed number was
fixed to 257. Both the sequential and random procedures were used in training. The

parameters of the networks for EDBD are: «,=0.095, x,=0.01, ¥,=0.0, v,=0.0, ¢,=0.01,
9.=0.1, 6=0.7, A=1.5.

Table 1. The parameter values used for two neural models.

oand © ZJ/Rix
The number of data seis 32 59
for training
The number of data sets
; 7 18
for testing
The iteration number 200.000 250.000
The number of PEs for 6 6
the first hidden layer
The number of PEs for 4 3
the second hidden laver

V. RESULTS AND CONCLUSIONS

In order to demonstrate the computational effort of the neural model, the test results of
ANNSs for o and 1 for a given directivity and the (Zo/Ri;) as a function of (Z,/R;,) are
compared with the resuits of [1,3,23] in Table 2 and Fig 4, respectively. The test results
illustrate that the performance of the proposed method is quite robust and precise. As
can be seen from Table 2 and Fig 4, there is excellent agreement with the data from the

method [1,3,23]. This excellent agreement supports the validity of ANN.

When the values of ¢ and 7 for a given directivity and (Zo/Rin) as a function of (Z,/R;,)

are known, the other design parameters of a log-periodic dipole array can be easily
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Table 2. Comparison of the optimum test values of o and t for a given directivity.

[1,3,23] Present neural model
Directivity c T o T

(dB)

8.5 0.147 0.822 0.147191 | 0.822133

9.0 0.157 0.865 0.156735 | 0.865513

9.5 0.163 0.892 0.163481 | 0.893879

10.0 0.168 0916 0.168053 | 0913061

10:5 0.172 0928 0.171471 0.528242

11.0 0.174 0.940 0.174181 | 0941247

11.5 0.176 0.950 0.176348 0.952376

obtained by using eqns. (1)-(9). In this work, a log-periodic dipole array in the form of
Fig.1d was designed to cover all the VHF TV channels (starting with 54 MHz for
channel 2 and ending with 216 MHz for channel 13). The desired directivity is 9 dB and
the input impedance is 50 ohms. The elements should be made of aluminium tubing

with

Zo/Rin
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Figure 4. Comparison of relative characteristic impedance of a feeder line as a function

of relative characteristic impedance of dipole element.
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1.905 e¢m (3/4 in.) outside diameter for the largest element and the feeder line and 0.48
cm for the smallest element. These design specifications are chosen the same as those of
[1] for comparison. The results obtained by using the step-by-step design procedure
given in Section 2 are compared with the results of [1] in Table 3. It is clear from Table

3 that the results of ANN are in very good agreement with the results of [1].

Table 3. Comparison of the design parameter values of a log-periodic dipole array.

[1] Present neural model
G 0.157 0.156735
1: 0.865 (.865513
a(® 12.13213 12.10722
B, 7.011224 7.000001
Amax(11) 5.555556 5.555556
L (m) 5.539397 5.549253
N 14.42873 14.46971
(14 or 15 element) (14 or 15 element)

c' 0.1688074 0.1684726
Z.(9) 327.8807 327.8807
Z/Rin 6.557615 6.557615
Z, () 60.00 60.01

S (cm) 2.148127 2.148141

In this paper, the log-periodic array was also designed by using a program called LPDA
which has been written by Pozar [23]. The specifications of the second design example
are that the lower frequency is 54 MHz, the upper frequency is 216 MHz, the desired
directivity is 8.5 dB and the radius of the largest dipole is 1 cm. These design
specifications are the same as those of [23]. First, the values of o and 1 are obtained
from the artificial neural networks. The required number of dipoles, the dipole lengths,
the dipole spacings, and the dipole radii are then obtained by using the LPDA program.
The results of ANN are compared with the results of [23] in Table 4. The geometry of
this log periodic dipole array is also shown in Fig. 5. The spacings are measured from
the current dipole to the previous dipole, so the spacing of the first dipole is taken as
zero. It is seen from the Table 4 that the results of ANN are in very good agreement
with the results of [23]. The two design examples given here support the validity of
ANNG.



Table 4. The design parameter values of a log-periodic dipole array.

Present neural model [23]
Dipole | Spacing Length Radius Spacing Length Radius
(m) (m) (m) (m) (m) (m)
1 0.0000 2.6476 0.0100 0.0000 2.6476 0.0100
2 0.7794 2.1767 0.0078 0.7784 2.1763 0.0078
3 0.6408 1.7895 0.0064 0.6398 1.7889 0.0064
4 0.5268 1.4712 0.0053 0.5259 1.4705 0.0053
3 0.4331 1.2005 0.0044 0.4323 1.2088 0.0044
6 0.3561 0.9944 0.0036 0.3554 0.9936 0.0036
7 0.2927 0.8175 0.0029 0.2921 0.8167 0.0029
3 0.2407 0.6721 0.0024 0.2401 0.6714 0.0024
9 0.1979 0.5526 0.0020 0.1974 0.5519 0.0020
o] 0.147191 0.147
1 0.822133 0.822

Figure 5. Geometry of a log-periodic dipole array.

In this work, the different learning algorithms such as the backpropagation, the delta-

bar-delta, and the quick propagation were also used to train the networks. However, the

best results was obtained from the EDBD. For this reason, only the results of the

EDBD were given in this paper. In previous our work [21], the best bandwidth results

of microstrip antennas were also obtained by using the EDBD.
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A distinct advantage of neural computation is that, after proper training, a neural
network completely bypasses the repeated use of complex iterative processes for new
cases presented to it. For engineering applications, the simple models are very usable.
Thus the neural model given in this work can also be used for many engineering

applications and purposes.
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