Bitlis Eren Üniversitesi Fen Bilimleri Dergisi

Bishop Frames of Salkowski Curves in \boldsymbol{E}^{3}

Sümeyye GÜR MAZLUM ${ }^{1 *}$
${ }^{1}$ Gümüşhane University Kelkit Aydın Doğan Vocational School Department of Computer Technology, Gümüşhane, Türkiye.
(ORCID: 0000-0003-2471-1627)

Keywords:

Salkowski curves, Type-1 Bishop frame, Type-2 Bishop frame, NBishop frame, Alternative frame, Darboux vector.

Abstract

In this study, alternative, type-1 Bishop, type-2 Bishop and N-Bishop frames of Salkowski curves in E^{3} are calculated. Moreover, curvatures, Darboux and pol vectors of these frames are found. Also, relationships between the Bishop frames, Darboux vectors and pole vectors are given.

1. Introduction

By defining a moving frame at every point on any curve, it is possible to examine the characteristic and kinematic properties of the curve. Therefore, defining a new and useful frame on any curve is always a current and interesting field of study, especially for geometers. One of the best known of the frames defined on any curve is the Frenet frame. This frame consists of three linearly independent orthonormal vectors obtained from derivatives of the curve, [1]. Alternative frame is produced from the elements of the Frenet frame, [2]. Another wellknown frame, the Bishop frame, is a relatively parallel frame obtained by rotating the Frenet frame around the T vector by an angle, [3]. This frame is known to be more advantageous than the Frenet frame, which works well even when the second derivative of the curve has vanishing. Therefore, it is a subject that not only geometry but also biology and computer graphics, [4,5]. Based on this frame, type2 Bishop frame was introduced in [6] and N-Bishop frame was introduced in [7]. The Type-2 Bishop frame is obtained by rotating the Frenet frame of the curve around the B vector by a certain angle, while the N -Bishop frame is obtained by rotating the alternative frame of the curve around N by a certain angle. Some other studies on these frames are [8-21]. On the other hand, Salkowski curves in E^{3} are slant helix type curves introduced by Salkowski, [22]. The

[^0]Frenet vectors and curvatures of these curves with constant curvature but not constant torsion were found by Monterde, [23]. The Darboux and pole vectors belonging to the Frenet frame and modified frames of Salkowski curves E^{3} are studied in [24]. Other some studies on Salkowski curves in E^{3} can be looked at from [25-28]. In this study, alternative, type-1, type-2 and N-Bishop frames of Salkowski curves are calculated and curvatures, Darboux and pole vectors belonging to the frames are investigated. Besides, the relations between these elements are given. The aim of this study is to define new frames on Salkowski curves. Although the Frenet frame of the Salkowski curve works smoothly, the literature richness of the curve has been increased with new frames defined on it.

2. Material and Method

Frenet frame $\{T, N, B\}$ of any non-unit speed (with an arbitrary parameter t) regular curve ψ in E^{3} is

$$
T=\frac{\psi^{\prime}}{\left\|\psi^{\prime}\right\|}, \quad N=B \wedge T, \quad B=\frac{\psi^{\prime} \wedge \psi^{\prime \prime}}{\left\|\psi^{\prime} \wedge \psi^{\prime \prime}\right\|}
$$

and curvature \aleph and torsion \mathfrak{J} of ψ are

$$
\aleph=\frac{\left\|\psi^{\prime} \wedge \psi^{\prime \prime}\right\|}{\left\|\psi^{\prime}\right\|^{3}}, \quad \mathfrak{J}=\frac{\left\langle\psi^{\prime}, \psi^{\prime \prime}, \psi^{\prime \prime \prime}\right\rangle}{\left\|\psi^{\prime} \wedge \psi^{\prime \prime}\right\|^{2}}
$$

[1]. Darboux vector and pole vector belonging to the Frenet frame of ψ are
$\left\{\begin{array}{l}\mathcal{F}=N \wedge N^{\prime}=\left\|\psi^{\prime}\right\|(\mathfrak{J} T+\mathfrak{\aleph} B), \\ \mathcal{C}=\frac{\mathfrak{I}}{\sqrt{\mathfrak{N}^{2}+\mathfrak{J}^{2}}} T+\frac{\aleph}{\sqrt{\mathfrak{\aleph}^{2}+\mathfrak{J}^{2}}} B,\end{array}\right.$
where
$T^{\prime}=\mathcal{F} \wedge T, \quad N^{\prime}=\mathcal{F} \wedge N, \quad B^{\prime}=\mathcal{F} \wedge B$.
Type-1 Bishop frame $\left\{T, N_{1}, B_{1}\right\}$ of any non-unit speed regular curve ψ in E^{3} is [3]
$\left\{\begin{array}{l}T=\frac{\psi^{\prime}}{\left\|\psi^{\prime}\right\|}, \\ N_{1}=\cos \Theta N-\sin \Theta B, \\ B_{1}=T \wedge N_{1}=\sin \Theta N+\cos \Theta B, \\ \Theta=\int\left\|\psi^{\prime}\right\| \mathfrak{I} d t,\end{array}\right.$
curvature $\mathfrak{\aleph}_{1}$ and torsion \mathfrak{J}_{1} of ψ are
$\aleph_{1}=\aleph \cos \Theta, \quad \Im_{1}=\aleph \sin \Theta$.
The matrix representation of type-1 Bishop derivative formulas of ψ is

$$
\left[\begin{array}{c}
T^{\prime} \tag{3}\\
N_{1}^{\prime} \\
B_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \left\|\psi^{\prime}\right\| \aleph_{1} & \left\|\psi^{\prime}\right\| \mathfrak{J}_{1} \\
-\left\|\psi^{\prime}\right\| \aleph_{1} & 0 & 0 \\
-\left\|\psi^{\prime}\right\| \mathfrak{J}_{1} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N_{1} \\
B_{1}
\end{array}\right]
$$

Darboux vector belonging to the type-1 Bishop frame of ψ is [8]
$\mathcal{F}=T \wedge T^{\prime}=\left\|\psi^{\prime}\right\|\left(-\Im_{1} N_{1}+\aleph_{1} B_{1}\right)$,
where
$T^{\prime}=\mathcal{F}_{1} \wedge T, \quad N_{1}^{\prime}=\mathcal{F}_{1} \wedge N_{1}, \quad B_{1}^{\prime}=\mathcal{F}_{1} \wedge B_{1}$.
Type-2 Bishop frame $\left\{N_{2}, B_{2}, B\right\}$ of any non-unit speed regular curve ψ in E^{3} is [6]

$$
\left\{\begin{array}{l}
N_{2}=\sin \Phi T+\cos \Phi N \tag{5}\\
B_{2}=B \wedge N_{2}=-\cos \Phi T+\sin \Phi N \\
B=T \wedge N \\
\Phi=\int\left\|\psi^{\prime}\right\| \aleph d t
\end{array}\right.
$$

where

$$
N^{\prime}=\overline{\mathcal{F}} \wedge N, \quad C^{\prime}=\overline{\mathcal{F}} \wedge C, \quad W^{\prime}=\overline{\mathcal{F}} \wedge W
$$

N -Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ of any non-unit speed regular curve ψ in E^{3} is [7]

$$
\left\{\begin{array}{l}
N=B \wedge T \tag{13}\\
N_{3}=\cos \Omega C-\sin \Omega W, \\
B_{3}=N \wedge N_{3}=\sin \Omega C+\cos \Omega W, \\
\Omega=\int G d t,
\end{array}\right.
$$

curvature \aleph_{3} and torsion \mathfrak{J}_{3} of ψ are
$\aleph_{3}=F \cos \Omega, \quad \Im_{3}=F \sin \Omega$.
The matrix representation of N -Bishop derivative formulas of ψ is
$\left[\begin{array}{c}N^{\prime} \\ N_{3}^{\prime} \\ B_{3}^{\prime}\end{array}\right]=\left[\begin{array}{ccc}0 & \left\|\psi^{\prime}\right\| \aleph_{3} & \left\|\psi^{\prime}\right\| \mathfrak{I}_{3} \\ -\left\|\psi^{\prime}\right\| \aleph_{3} & 0 & 0 \\ -\left\|\psi^{\prime}\right\| \mathfrak{I}_{3} & 0 & 0\end{array}\right]\left[\begin{array}{c}N \\ N_{3} \\ B_{3}\end{array}\right]$.
Darboux vector belonging to the N -Bishop of ψ is
$\mathcal{F}_{3}=N \wedge N^{\prime}=\left\|\psi^{\prime}\right\|\left(-\Im_{3} N_{3}+\aleph_{3} B_{3}\right)$,
[17], where
$N^{\prime}=\mathcal{F}_{3} \wedge N, \quad N_{3}{ }^{\prime}=\mathcal{F}_{2} \wedge N_{3}, \quad B_{3}{ }^{\prime}=\mathcal{F}_{2} \wedge B_{3}$.
Definition 2.1. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and

$$
\begin{aligned}
& n=\frac{m}{\sqrt{m^{2}+1}}, \\
& \begin{aligned}
\psi_{m}= & \frac{n}{4 m}\left(\frac{n-1}{1+2 n} \sin ((1+2 n) t)\right. \\
& \quad-\frac{1+n}{1-2 n} \sin ((1-2 n) t)-2 \sin t, \\
& \frac{1-n}{1+2 n} \cos ((1+2 n) t) \\
& \left.\quad \frac{1+n}{1-2 n} \cos ((1-2 n) t)+2 \cos t, \frac{1}{m} \cos (2 n t)\right)
\end{aligned}
\end{aligned}
$$

is the parametric equation of Salkowski curves in E^{3}, Figure 1, [22]. The curves are regular in the interval of $]-\frac{\pi}{2 n}, \frac{\pi}{2 n}[$ and
$\left\|\psi_{m}^{\prime}\right\|=\frac{n}{m} \cos (n t)$.

Figure 1. Salkowski curves for $m=\frac{1}{5}, \frac{1}{11},-\frac{1}{5}-\frac{1}{11}$, respectively

Frenet frame $\{T, N, B\}$ of ψ_{m} is [23]

$$
\left\{\begin{align*}
T= & (-\cos t \cos (n t)-n \sin t \sin (n t) \\
& -\sin t \cos (n t)+n \cos t \sin (n t), \\
& \left.-\frac{n}{m} \sin (n t)\right) \\
N= & \left(\frac{n}{m} \sin t,-\frac{n}{m} \cos t,-n\right), \tag{18}\\
B= & (-\cos t \sin (n t)+n \sin t \cos (n t), \\
& -\sin t \sin (n t)-n \cos t \cos (n t), \\
& \left.\frac{n}{m} \cos (n t)\right)
\end{align*}\right.
$$

curvature \aleph and torsion \mathfrak{J} of ψ_{m} are $[23,24]$
$\mathfrak{\aleph}=1, \quad \mathfrak{J}=-\tan (n t)$.
Darboux vector \mathcal{F} and pole vector \mathcal{C} (or unit vector in the direction of Darboux vector) belonging to the Frenet frame of ψ_{m} are [24]

$$
\left\{\begin{array}{l}
\mathcal{F}=\left(\frac{n^{2}}{m} \sin t,-\frac{n^{2}}{m} \cos t, \frac{n^{2}}{m^{2}}\right), \tag{20}\\
\mathcal{C}=\left(n \sin t,-n \cos t, \frac{n}{m}\right)
\end{array}\right.
$$

3. Bishop Frames of Salkowski Curves in \boldsymbol{E}^{3}

In this section, type-1 Bishop, type-2 Bishop, alternative and N-Bishop frames of Salkowski curves ψ_{m} in E^{3} will be examined, respectively. Besides, Darboux and pole vectors belonging to these frames of ψ_{m} will be computed.

3.1. Type-1 Bishop Frame of Salkowski Curves in E^{3}

Theorem 3.1. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, type-1 Bishop frame $\left\{T, N_{1}, B_{1}\right\}$ of ψ_{m} obtained by rotating Frenet frame of ψ_{m} around T by an angle Θ is as follows:

$$
\left\{\begin{align*}
T= & -\cos t \cos (n t)-n \sin t \sin (n t), \\
& -\sin t \cos (n t)+n \cos t \sin (n t), \\
& \left.-\frac{n}{m} \sin (n t)\right), \\
N_{1}= & \left(\frac{n}{m} \cos \Theta \sin t+\sin \Theta \cos t \sin (n t)\right. \\
& -n \sin \Theta \sin t \cos (n t), \\
& -\frac{n}{m} \cos \Theta \cos t+\sin \Theta \sin t \sin (n t) \\
& +n \sin \Theta \cos t \cos (n t), \\
& \left.-n \cos \Theta-\frac{n}{m} \sin \Theta \cos (n t)\right), \\
B_{1}= & \frac{n}{m} \sin \Theta \sin t-\cos \Theta \cos t \sin (n t) \\
& +n \cos \Theta \sin t \cos (n t), \\
& -\frac{n}{m} \sin \Theta \cos t-\cos \Theta \sin t \sin (n t) \\
& -n \cos \Theta \cos t \cos (n t), \tag{21}\\
& \left.-n \sin \Theta+\frac{n}{m} \cos \Theta \cos (n t)\right) .
\end{align*}\right.
$$

Proof: The proof is obvious that from (1) and (18).
Corollary 3.1. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, type-1 Bishop frame of ψ_{m} is obtained by rotating Frenet frame of ψ_{m} around T by an angle Θ :
$\Theta=\frac{1}{m} \cos (n t)+c_{1}, \quad c_{1} \in R$.
Proof: From (1), (17) and (19),

$$
\begin{aligned}
\Theta & =\int\left\|\psi_{m}^{\prime}\right\| \mathfrak{J} d t=-\frac{n}{m} \int \sin (n t) d t \\
& =\frac{1}{m} \cos (n t)+c_{1}, \quad c_{1} \in R
\end{aligned}
$$

is obtained.
Corollary 3.2. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, there is the following matrix relation between of type-1 Bishop frame $\left\{T, N_{1}, B_{1}\right\}$ and Frenet frame $\{T, N, B\}$ of ψ_{m} :

$$
\left[\begin{array}{c}
T \\
N_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\frac{1}{m} \cos (n t)+c_{1}\right) & -\sin \left(\frac{1}{m} \cos (n t)+c_{1}\right) \\
0 & \sin \left(\frac{1}{m} \cos (n t)+c_{1}\right) & \cos \left(\frac{1}{m} \cos (n t)+c_{1}\right)
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right] .
$$

Proof: The proof is obvious that from (1) and (22).
Theorem 3.2. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, curvature \aleph_{1} and torsion \Im_{1} of type- 1 Bishop frame $\left\{T, N_{1}, B_{1}\right\}$ of ψ_{m} obtained by rotating Frenet frame of ψ_{m} around T by an angle Θ are as follows:

$$
\left\{\begin{array}{l}
\aleph_{1}=\cos \Theta=\cos \left(\frac{1}{m} \cos (n t)+c_{1}\right) \tag{23}\\
\Im_{1}=\sin \Theta=\sin \left(\frac{1}{m} \cos (n t)+c_{1}\right)
\end{array}\right.
$$

Proof: The proof is obvious that from (2), (19) and (22).

Corollary 3.3. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, derivative vectors of Bishop frame $\left\{T, N_{1}, B_{1}\right\}$ of ψ_{m} are as follows:

$$
\left\{\begin{align*}
T^{\prime}= & \frac{n^{2}}{m^{2}} \cos (n t)(\sin t,-\cos t,-m) \\
N_{1}^{\prime}= & \left(\frac{n}{m} \cos \Theta \cos t \cos ^{2}(n t)\right. \\
& +\frac{n^{2}}{m} \cos \Theta \sin t \cos (n t) \sin (n t), \\
& \frac{n}{m} \cos \Theta \sin t \cos ^{2}(n t) \\
& -\frac{n^{2}}{m} \cos \Theta \cos t \cos (n t) \sin (n t) \\
& \left.\frac{n^{2}}{m^{2}} \cos \Theta \cos (n t) \sin (n t)\right) \\
B_{1}^{\prime}= & \frac{n}{m} \sin \Theta \cos t \cos ^{2}(n t) \\
+ & \frac{n^{2}}{m} \sin \Theta \sin t \cos ^{m}(n t) \sin (n t) \tag{24}\\
& \frac{n}{m} \sin \Theta \sin t \cos ^{2}(n t) \\
- & \frac{n^{2}}{m} \sin \Theta \cos t \cos ^{2}(n t) \sin (n t) \\
& \left.\frac{n^{2}}{m^{2}} \sin \Theta \cos (n t) \sin (n t)\right)
\end{align*}\right.
$$

Proof: From (3), (17), (21) and (23), the vectors
$N_{1}^{\prime}=-\left\|\psi_{m}^{\prime}\right\| \aleph_{1} T$,
$B_{1}^{\prime}=-\left\|\psi_{m}^{\prime}\right\| \mathfrak{J}_{1} T$,
$T^{\prime}=\left\|\psi_{m}^{\prime}\right\| \aleph_{1} N_{1}+\left\|\psi_{m}{ }^{\prime}\right\| \mathfrak{I}_{1} B_{1}$
are obtained as in (24). These vectors can be obtained in the same way by taking the derivatives of the vectors in (22).

Theorem 3.3. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, the matrix representation of type-1 Bishop derivative formulas of ψ_{m} :

$$
\left[\begin{array}{c}
T^{\prime} \\
N_{1}^{\prime} \\
B_{1}^{\prime}
\end{array}\right]=\frac{n}{m} \cos (n t)\left[\begin{array}{ccc}
0 & \cos \Theta & \sin \Theta \\
-\cos \Theta & 0 & 0 \\
-\sin \Theta & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N_{1} \\
B_{1}
\end{array}\right] .
$$

Proof: The proof is obvious that from (3), (17) and (23). Also, it is also obtained by comparing expressions (21) and (24).

Theorem 3.4. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R$ and $n=\frac{m}{\sqrt{m^{2}+1}}$,
Darboux vector \mathcal{F}_{1} belonging to the type-1 Bishop frame of ψ_{m} is as follows:

$$
\begin{align*}
\mathcal{F}_{1}=(& -\frac{n}{m} \cos t \cos (n t) \sin (n t)+\frac{n^{2}}{m} \sin t \cos ^{2}(n t), \\
& -\frac{n}{m} \sin t \cos (n t) \sin (n t)-\frac{n^{2}}{m} \cos t \cos ^{2}(n t) \\
& \left.\frac{n^{2}}{m^{2}} \cos ^{2}(n t)\right) \tag{25}
\end{align*}
$$

Proof: If (17), (21) and (23) are substituted in (4), (25) is obtained.

Theorem 3.5. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, pole vector C_{1} belonging to the type-1 Bishop frame of ψ_{m} is as follows:

$$
\begin{align*}
C_{1}= & (-\cos t \sin (n t)+n \sin t \cos (n t), \\
& -\sin t \sin (n t)-n \cos t \cos (n t), \tag{26}\\
& \left.\frac{n}{m} \cos (n t)\right)
\end{align*}
$$

Proof: From (4) and (23), pole vector (unit vector in the direction of Darboux vector) belonging to the type-1 Bishop frame of ψ_{m} is

$$
\begin{aligned}
\mathcal{C}_{1} & =\frac{\mathcal{F}_{1}}{\left\|\mathcal{F}_{1}\right\|}=-\frac{\mathfrak{I}_{1}}{\sqrt{\aleph_{1}^{2}+\Im_{1}^{2}}} N_{1}+\frac{\aleph_{1}}{\sqrt{\aleph_{1}^{2}+\mathfrak{J}_{1}^{2}}} B_{1} \\
& =-\mathfrak{I}_{1} N_{1}+\aleph_{1} B_{1} \\
& =-\sin \Theta N_{1}+\cos \Theta B_{1}
\end{aligned}
$$

Figure 2. Here, it is obvious that from (21). Also, it is also obtained by dividing the vector \mathcal{F}_{1} by its norm

$$
\left\|\mathcal{F}_{1}\right\|=\frac{n}{m} \cos (n t) .
$$

Figure 2. Pole vector C_{1} belonging to the type-1 Bishop frame of ψ_{m}

Corollary 3.4. Binormal vector B and pole vector C_{1} belonging to the type-1 Bishop frame of ψ_{m} are the same.

Proof: The proof is obvious that from (18) and (27).

3.2. Type-2 Bishop Frame of Salkowski Curves in

 E^{3}Theorem 3.6. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, type-2 Bishop frame $\left\{N_{2}, B_{2}, B\right\}$ of ψ_{m} obtained by rotating Frenet frame around B by an angle Φ is as follows:

$$
\left\{\begin{align*}
N_{2}= & (-\sin \Phi \cos t \cos (n t) \\
& -n \sin \Phi \sin t \sin (n t)+\frac{n}{m} \cos \Phi \sin t, \\
& -\sin \Phi \sin t \cos (n t) \\
& +n \sin \Phi \cos t \sin (n t)-\frac{n}{m} \cos \Phi \cos t, \\
& \left.-\frac{n}{m} \sin \Phi \sin (n t)-n \cos \Phi\right) \\
B_{2}= & (\cos \Phi \cos t \cos (n t) \\
+ & n \cos \Phi \sin t \sin (n t)+\frac{n}{m} \sin \Phi \sin t, \\
& \cos \Phi \sin t \cos (n t) \\
- & n \cos \Phi \cos t \sin (n t)-\frac{n}{m} \sin \Phi \cos t, \\
& \left.\frac{n}{m} \cos \Phi \sin (n t)-n \sin \Phi\right), \\
B=(& -\cos t \sin (n t)+n \sin t \cos (n t) \tag{27}\\
& \left.-\sin t \sin (n t)-n \cos t \cos (n t), \frac{n}{m} \cos (n t)\right)
\end{align*}\right.
$$

Proof: The proof is obvious that from (5) and (18).
Corollary 3.5. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, type-2 Bishop frame of ψ_{m} is obtained by rotating Frenet frame around B by an angle Φ :

$$
\begin{equation*}
\Phi=\frac{1}{m} \sin (n t)+c_{2}, \quad c_{2} \in R . \tag{28}
\end{equation*}
$$

Proof: From (5), (17) and (30),

$$
\begin{aligned}
\Phi & =\int\left\|\psi_{m}^{\prime}\right\| \aleph d t=\int \frac{n}{m} \cos (n t) d t \\
& =\frac{1}{m} \sin (n t)+c_{2}, \quad c_{2} \in R
\end{aligned}
$$

is obtained.
Corollary 3.6. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, there is the following matrix relation between of type-2 Bishop frame $\left\{N_{2}, B_{2}, B\right\}$ and Frenet frame $\{T, N, B\}$ of ψ_{m} :

$$
\left[\begin{array}{c}
N_{2} \\
B_{2} \\
B
\end{array}\right]=\left[\begin{array}{ccc}
\sin \left(\frac{1}{m} \sin (n t)+c_{2}\right) & \cos \left(\frac{1}{m} \sin (n t)+c_{2}\right) & 0 \\
-\cos \left(\frac{1}{m} \sin (n t)+c_{2}\right) & \sin \left(\frac{1}{m} \sin (n t)+c_{2}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right] .
$$

Proof: The proof is obvious that from (5) and (28).
Theorem 3.7. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, curvature \aleph_{2} and torsion \Im_{2} of type-2 Bishop frame $\left\{N_{2}, B_{2}, B\right\}$ of ψ_{m} obtained by rotating Frenet frame around B by an angle Φ are as follows:

$$
\left\{\begin{array}{l}
\aleph_{2}=\tan (n t) \cos \Phi=\tan (n t) \cos \left(\frac{1}{m} \sin (n t)+c_{2}\right) \tag{29}\\
\Im_{2}=\tan (n t) \sin \Phi=\tan (n t) \sin \left(\frac{1}{m} \sin (n t)+c_{2}\right)
\end{array}\right.
$$

Proof: The proof is obvious that from (6), (19) and (28).

Corollary 3.7. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, the derivative vectors of type-2 Bishop frame $\left\{N_{2}, B_{2}, B\right\}$ of ψ_{m} are as follows:

$$
\left\{\begin{align*}
& N_{2}^{\prime}=\left(\frac{n}{m} \cos \Phi \cos t \sin ^{2}(n t)\right. \\
&-\frac{n^{2}}{m} \cos \Phi \sin t \cos (n t) \sin (n t) \\
& \frac{n}{m} \cos \Phi \sin t \sin ^{2}(n t) \\
&+\frac{n^{2}}{m} \cos \Phi \cos t \cos (n t) \sin (n t), \\
&\left.-\frac{n^{2}}{m^{2}} \cos \Phi \cos (n t) \sin (n t)\right), \\
& B_{2}^{\prime}= \frac{n}{m} \sin \Phi \cos t \sin ^{2}(n t) \\
&-\frac{n^{2}}{m} \sin \Phi \sin t \cos (n t) \sin (n t), \\
& \frac{n}{m} \sin \Phi \sin t \sin ^{2}(n t) \\
&+\frac{n^{2}}{m} \sin \Phi \cos t \cos (n t) \sin (n t), \\
&\left.-\frac{n^{2}}{m^{2}} \sin \Phi \cos (n t) \sin (n t)\right), \tag{30}\\
& B^{\prime}=\frac{n^{2}}{m^{2}} \sin (n t)(\sin t,-\cos t,-m),
\end{align*}\right.
$$

Proof: From (7), (17), (27) and (29), the vectors
$N_{2}{ }^{\prime}=-\left\|\psi_{m}{ }^{\prime}\right\| \aleph_{2} B$,
$B_{2}{ }^{\prime}=-\left\|\psi_{m}{ }^{\prime}\right\| \mathfrak{J}_{2} B$,
$B^{\prime}=\left\|\psi_{m}^{\prime}\right\| \aleph_{2} N_{2}+\left\|\psi_{m}^{\prime}\right\| \Im_{2} B_{2}$
are obtained as in (30). These vectors can be obtained in the same way by taking the derivatives of the vectors in (27).

Theorem 3.8. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, the matrix representation of type-2 Bishop derivative formulas of ψ_{m} :

$$
\left[\begin{array}{c}
N_{2}^{\prime} \\
B_{2}^{\prime} \\
B^{\prime}
\end{array}\right]=\frac{n}{m} \sin (n t)\left[\begin{array}{ccc}
0 & 0 & -\cos \Phi \\
0 & 0 & -\sin \Phi \\
\cos \Phi & \sin \Phi & 0
\end{array}\right]\left[\begin{array}{c}
N_{2} \\
B_{2} \\
B
\end{array}\right]
$$

Proof: The proof is obvious that from (7), (17) and (29). Also, it is also obtained by comparing expressions (27) and (30).

Theorem 3.9. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R$ and $n=\frac{m}{\sqrt{m^{2}+1}}$,
Darboux vector \mathcal{F}_{2} belonging to the type-2 Bishop frame of ψ_{m} is as follows:

$$
\begin{align*}
\mathcal{F}_{2}= & \left(\frac{n}{m} \cos t \cos (n t) \sin (n t)+\frac{n^{2}}{m} \sin t \sin ^{2}(n t),\right. \\
& \frac{n}{m} \sin t \cos (n t) \sin (n t)-\frac{n^{2}}{m} \cos t \sin ^{2}(n t), \tag{31}\\
& \left.\frac{n^{2}}{m^{2}} \sin ^{2}(n t)\right)
\end{align*}
$$

Proof: If (17), (21) and (23) are substituted in (4), (31) is obtained.

Theorem 3.10. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, pole vector C_{2} belonging to the type-2 Bishop frame of ψ_{m} is as follows:

$$
\begin{align*}
C_{2}= & (\cos t \cos (n t)+n \sin t \sin (n t), \\
& \sin t \cos (n t)-n \cos t \sin (n t), \tag{32}\\
& \left.\frac{n}{m} \sin (n t)\right) .
\end{align*}
$$

Proof: From (8) and (29), pole vector belonging to the type-2 Bishop frame of ψ_{m} is

$$
\begin{aligned}
\mathcal{C}_{2} & =\frac{\mathcal{F}_{2}}{\left\|\mathcal{F}_{2}\right\|}=-\frac{\mathfrak{I}_{2}}{\sqrt{\aleph_{2}^{2}+\mathfrak{I}_{2}^{2}}} N_{2}+\frac{\aleph_{2}}{\sqrt{\aleph_{2}^{2}+\mathfrak{I}_{2}^{2}}} B_{2} \\
& =-\frac{\mathfrak{I}_{2}}{\tan (n t)} N_{2}+\frac{\aleph_{2}}{\tan (n t)} B_{2} \\
& =\sin \Phi N_{2}-\cos \Phi B_{2},
\end{aligned}
$$

Figure 3. Here, from (27), it is done. Also, it is also obtained by dividing the vector \mathcal{F}_{2} by its norm
$\left\|\mathcal{F}_{2}\right\|=\frac{n}{m} \sin (n t)$.

$\frac{\mathrm{K}_{2}}{\tan (n t)} B_{2}$

Figure 3. Pole vector C_{2} belonging to the type-2 Bishop frame of ψ_{m}

Corollary 3.8. Tangent vector T and pole vector C_{2} belonging to the type-2 Bishop frame of ψ_{m} are the same.

Proof: From (18) and (34), it is clear.

3.3. Alternative Frame of Salkowski Curves in \boldsymbol{E}^{3}

Theorem 3.11. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, alternative frame $\{N, C, W\}$ of ψ_{m} is as follows:

$$
\left\{\begin{array}{l}
N=\left(\frac{n}{m} \sin t,-\frac{n}{m} \cos t,-n\right), \tag{33}\\
C=(\cos t, \sin t, 0), \\
W=\left(n \sin t,-n \cos t, \frac{n}{m}\right) .
\end{array}\right.
$$

Proof: The proof is obvious that from (9), (18) and (19).

Corollary 3.9. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, there is the following matrix relation between of alternative frame $\{N, C, W\}$ and Frenet frame $\{T, N, B\}$ of ψ_{m} :

$$
\left[\begin{array}{c}
N \tag{34}\\
C \\
W
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\cos (n t) & 0 & -\sin (n t) \\
-\sin (n t) & 0 & \cos (n t)
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right] .
$$

Proof: The proof is obvious that from (9) and (19).

Theorem 3.12. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, curvature and torsion of alternative frame $\{N, C, W\}$ of ψ_{m} are as follows:
$\left\{\begin{array}{l}F=\frac{1}{\cos (n t)}, \\ G=-n .\end{array}\right.$
Proof: The proof is obvious that from (10) and (31). Here, from Definition 2.1, it is seen that $\cos (n t)>0$.

Corollary 3.10. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, the derivative vectors of alternative frame $\{N, C, W\}$ of ψ_{m} are as follows:
$\left\{\begin{array}{l}N^{\prime}=\left(\frac{n}{m} \cos t, \frac{n}{m} \sin t, 0\right), \\ C^{\prime}=(-\sin t, \cos t, 0), \\ W^{\prime}=(n \cos t, n \sin t, 0) .\end{array}\right.$
Proof: From (11), (17), (33) and (35), the vectors
$N^{\prime}=\left\|\psi_{m}{ }^{\prime}\right\| F C$,
$W^{\prime}=-G C$,
$C^{\prime}=G W-\left\|\psi_{m}^{\prime}\right\| F N$
are obtained as in (36). These vectors can be obtained in the same way by taking the derivatives of the vectors in (33).

Theorem 3.13. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, the matrix representation of alternative derivative formulas of ψ_{m} is as follows:

$$
\left[\begin{array}{c}
N^{\prime} \\
C^{\prime} \\
W^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \frac{n}{m} & 0 \\
-\frac{n}{m} & 0 & n \\
0 & -n & 0
\end{array}\right]\left[\begin{array}{c}
N \\
C \\
W
\end{array}\right] .
$$

Proof: From (11), (17) and (35), it is obtained. Also, it is also obtained by comparing expressions (33) and (36).

Theorem 3.14. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, Darboux vector $\overline{\mathcal{F}}$ belonging to the alternative frame of ψ_{m} is as follows:

$$
\begin{equation*}
\overline{\mathcal{F}}=(0,0,1) . \tag{37}
\end{equation*}
$$

Proof: If (17), (33) and (35) are substituted in (12), (37) is obtained.

Theorem 3.15. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, pole vector \bar{C} belonging to the alternative frame of ψ_{m} is as follows:
$\bar{C}=(0,0,1)$.
Proof: From (12), (17) and (35), pole vector belonging to the alternative frame of ψ_{m} is

$$
\begin{aligned}
\overline{\mathcal{C}} & =\frac{\overline{\mathcal{F}}}{\|\overline{\mathcal{F}}\|}=\frac{G}{\sqrt{G^{2}+\left\|\psi_{m}^{\prime}\right\|^{2} F^{2}}} N+\frac{\left\|\psi_{m}^{\prime}\right\| F}{\sqrt{G^{2}+\left\|\psi_{m}^{\prime}\right\|^{2} F^{2}}} W \\
& =G N+\left\|\psi_{m}^{\prime}\right\| F W \\
& =-n N+\frac{n}{m} W,
\end{aligned}
$$

Figure 4. Here, it is obvious that from (33). Also, it is also obtained by dividing the vector $\overline{\mathcal{F}}$ by its norm $\|\overline{\mathcal{F}}\|=1$.

$$
\left\|\psi^{\prime}\right\| F W
$$

Figure 4. Pole vector \bar{C} belonging to the alternative frame of ψ_{m}

Corollary 3.11. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, the angle between of the vectors W and $\overline{\mathcal{C}}$ belonging to the alternative frame of ψ_{m} is $\delta=\arctan (m)$.

Proof: From Figure $4,(17)$ and (35), $\tan \delta=m$. So, the proof is completed.

3.4. N-Bishop Frame of Salkowski Curves in E^{3}

Theorem 3.16. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, N-Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ of ψ_{m} obtained by rotating alternative frame around N by an angle Ω is as follows:

$$
\left\{\begin{align*}
N= & \left(\frac{n}{m} \sin t,-\frac{n}{m} \cos t,-n\right), \\
N_{3}= & (\cos \Omega \cos t-n \sin \Omega \sin t, \\
& \left.\cos \Omega \sin t+n \sin \Omega \cos t,-\frac{n}{m} \sin \Omega\right), \tag{38}\\
B_{3}= & (\cos \Omega \cos t-n \sin \Omega \sin t, \\
& \left.\cos \Omega \sin t+n \sin \Omega \cos t,-\frac{n}{m} \sin \Omega\right)
\end{align*}\right.
$$

Proof: The proof is obvious that from (13) and (18).
Corollary 3.12. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, N-Bishop frame of ψ_{m} is obtained by rotating alternative frame around N by an angle Ω :
$\Omega=-n t+c_{3}, \quad c_{3} \in R$.
Proof: From (13) and (35),
$\Omega=\int G d t=-\int n d t=-n t+c_{3}, \quad c_{3} \in R$
is obtained.
Corollary 3.13. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, there is the following matrix relation
between of N -Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ and alternative frame $\{N, C, B\}$ of ψ_{m} :

$$
\left[\begin{array}{c}
N \tag{40}\\
N_{3} \\
B_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(-n t+c_{3}\right) & -\sin \left(-n t+c_{3}\right) \\
0 & \sin \left(-n t+c_{3}\right) & \cos \left(-n t+c_{3}\right)
\end{array}\right]\left[\begin{array}{c}
N \\
C \\
W
\end{array}\right] .
$$

Proof: The proof is obvious that from (13) and (38).
Theorem 3.17. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, curvature \aleph_{3} and torsion \Im_{3} of $\mathrm{N}-$ Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ of ψ_{m} obtained by rotating alternative frame around N by an angle Ω are as follows:
$\left\{\begin{array}{l}\mathfrak{N}_{3}=\frac{\cos \Omega}{\cos (n t)}=\frac{\cos \left(-n t+c_{3}\right)}{\cos (n t)}, \\ \mathfrak{J}_{3}=\frac{\sin \Omega}{\cos (n t)}=\frac{\sin \left(-n t+c_{3}\right)}{\cos (n t)} .\end{array}\right.$
Proof: The proof is obvious that from (14) and (35).
Corollary 3.14. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, the derivative vectors of N-Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ of ψ_{m} are as follows:

$$
\left\{\begin{array}{l}
N^{\prime}=\left(\frac{n}{m} \cos t, \frac{n}{m} \sin t, 0\right) \tag{42}\\
N_{3}^{\prime}=\frac{n^{2}}{m^{2}} \cos \Omega(-\sin t, \cos t,-m), \\
B_{3}^{\prime}=\frac{n^{2}}{m^{2}} \sin \Omega(-\sin t, \cos t, m)
\end{array}\right.
$$

Proof: From (15), (17), (38) and (41), the vectors

$$
\begin{aligned}
& N_{3}^{\prime}=-\left\|\psi_{m}^{\prime}\right\| \aleph_{3} N, \\
& B_{3}^{\prime}=-\left\|\psi_{m}^{\prime}\right\| \mathfrak{J}_{3} N, \\
& N^{\prime}=\left\|\psi_{m}^{\prime}\right\| \aleph_{3} N_{3}+\left\|\psi_{m}^{\prime}\right\| \mathfrak{J}_{3} B_{3}
\end{aligned}
$$

are obtained as in (42). These vectors can be obtained in the same way by taking the derivatives of the vectors in (38).
Theorem 3.18. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, the matrix representation of N-Bishop derivative formulas of ψ_{m} :

$$
\left[\begin{array}{c}
N^{\prime} \\
N_{3}^{\prime} \\
B_{3}^{\prime}
\end{array}\right]=\frac{n}{m}\left[\begin{array}{ccc}
0 & \cos \Omega & \sin \Omega \\
-\cos \Omega & 0 & 0 \\
-\sin \Omega & 0 & 0
\end{array}\right]\left[\begin{array}{c}
N \\
N_{3} \\
B_{3}
\end{array}\right] .
$$

Proof: The proof is obvious that from (15), (17) and (41). Also, it is also obtained by comparing expressions (38) and (41).

Theorem 3.19. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, Darboux vector \mathcal{F}_{3} belonging to the N -Bishop frame of ψ_{m} is as follows:

$$
\begin{equation*}
\mathcal{F}_{3}=\left(\frac{n^{2}}{m} \sin t,-\frac{n^{2}}{m} \cos t, \frac{n^{2}}{m^{2}}\right) . \tag{43}
\end{equation*}
$$

Proof: If (17), (38) and (41) are substituted in (16), (43) is obtained.

Theorem 3.20. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, pole vector C_{3} belonging to the N Bishop frame of ψ_{m} is as follows:

$$
\begin{equation*}
C_{3}=\left(n \sin t,-n \cos t, \frac{n}{m}\right) . \tag{44}
\end{equation*}
$$

Proof: From (16) and (41), pole vector belonging to the N-Bishop frame of ψ_{m} is

$$
\begin{aligned}
C_{3} & =\frac{\mathcal{F}_{3}}{\left\|\mathcal{F}_{3}\right\|}=-\frac{\mathfrak{I}_{3}}{\sqrt{\aleph_{3}^{2}+\mathfrak{J}_{3}^{2}}} N_{3}+\frac{\aleph_{3}}{\sqrt{\aleph_{3}^{2}+\mathfrak{J}_{3}^{2}}} B_{3} \\
& =-\cos (n t) \mathfrak{J}_{3} N_{3}+\sin (n t) \aleph_{3} B_{3} \\
& =-\sin \Omega N_{3}+\cos \Omega B_{3}
\end{aligned}
$$

Figure 5. Here, from (38), it is done.

Also, it is also obtained by dividing the vector \mathcal{F}_{3} by its norm $\left\|\mathcal{F}_{3}\right\|=\frac{n}{m}$.

Figure 5. Pole vector C_{3} belonging to the type-2 Bishop frame of ψ_{m}

Corollary 3.15. Pole vector C and pole vector C_{3} belonging to the type-2 Bishop frame of ψ_{m} are the same.

Proof: From (20) and (44), it is clear.
Corollary 3.16. For $m \neq \pm \frac{\sqrt{3}}{3}, 0 \in R \quad$ and $n=\frac{m}{\sqrt{m^{2}+1}}$, there is the following matrix relation between of N-Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ and Frenet frame $\{T, N, B\}$ of ψ_{m} :

$$
\left[\begin{array}{c}
N \\
N_{3} \\
B_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-A(t) & 0 & B(t) \\
B(t) & 0 & A(t)
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right],
$$

here,

$$
\begin{aligned}
& A(t)=\cos \Omega \cos (n t)-\sin \Omega \sin (n t) \\
& B(t)=-\sin \Omega \cos (n t)-\cos \Omega \sin (n t)
\end{aligned}
$$

Proof: The proof is obvious that from (18), (34) and (40).

4. Conclusion and Suggestions

i. The relationship between type-1 Bishop frame $\left\{T, N_{1}, B_{1}\right\}$ and type-2 Bishop frame $\left\{N_{2}, B_{2}, B\right\}$ of ψ_{m} is as follows:
$\left\{\begin{array}{l}N_{2}=\sin \Phi T+\cos \Phi \cos \Theta N_{1}+\cos \Phi \sin \Theta B_{1}, \\ B_{2}=-\cos \Phi T+\sin \Phi \cos \Theta N_{1}+\sin \Phi \sin \Theta B_{1}, \\ B=-\sin \Theta N_{1}+\cos \Theta B_{1} .\end{array}\right.$
ii. The relationship between type-1 Bishop frame $\left\{T, N_{1}, B_{1}\right\}$ and N-Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ of ψ_{m} is as follows:

$$
\left\{\begin{aligned}
N= & \cos \Theta N_{1}+\sin \Theta B_{1}, \\
N_{3}= & (-\cos \Omega \cos (n t)+\sin \Omega \sin (n t)) T \\
& +(\sin \Omega \sin \Theta \cos (n t)+\cos \Omega \sin \Theta \sin (n t)) N_{1} \\
& -(\sin \Omega \cos \Theta \cos (n t)-\cos \Omega \cos \Theta \sin (n t)) B_{1}, \\
B_{3}= & -(\sin \Omega \cos (n t)+\cos \Omega \sin (n t)) T \\
& -(\cos \Omega \sin \Theta \cos (n t)+\sin \Omega \sin \Theta \sin (n t)) N_{1} \\
& -(\sin \Omega \cos \Theta \cos (n t)-\cos \Omega \cos \Theta \sin (n t)) B_{1} .
\end{aligned}\right.
$$

iii. The relationship between type-1 Bishop frame $\left\{N_{2}, B_{2}, B\right\}$ and N-Bishop frame $\left\{N, N_{3}, B_{3}\right\}$ of ψ_{m} is as follows:

$$
\left\{\begin{aligned}
N= & \cos \Phi N_{2}+\sin \Phi B_{2}, \\
N_{3}= & (-\cos \Omega \cos (n t)+\sin \Omega \sin (n t)) N_{2} \\
& +(\cos \Omega \cos (n t)-\sin \Omega \sin (n t)) B_{2} \\
& -(\sin \Omega \cos (n t)+\cos \Omega \sin (n t)) B, \\
B_{3}= & -(\sin \Omega \cos (n t)+\cos \Omega \sin (n t)) N_{2} \\
& +(\sin \Omega \cos (n t)+\cos \Omega \sin (n t)) B_{2} \\
& +(\cos \Omega \cos (n t)-\sin \Omega \sin (n t)) B .
\end{aligned}\right.
$$

In this study, alternative, type-1 Bishop, type-2 Bishop and N-Bishop frames of Salkowski curves in Euclidean 3-space are defined and the theorems and corollaries throughout the paper are obtained through these frames. Thus, it is possible to carry out new studies on these current frames related to the Frenet frame of Salkowski curves. Moreover, similar studies for anti-Salkowski curves or Salkowski curves in Minkowski 3-space are still an open problem.

Acknowledgment

The author would like to thank the referees who criticize the paper and the editors who contributed to the article publication process.

References

[1] H. H. Hacısalihoğlu, Diferansiyel Geometri. İnönü Üniversitesi Yayınları, Malatya, 1983.
[2] P. D. Scofield, "Curves of constant precessions," The American mathematical monthly, vol. 102, pp. 531-537, 1995.
[3] R.L. Bishop, "There is more than one way to frame a curve," The American Mathematical Monthly, vol. 82, pp. 246-251, 1975.
[4] N. Clauvelin, W. K. Olson and I. Tobias, "Characterizations of the geometry and topology of DNA pictured as a discrete collection of atoms," Journal of Chemical Theory and Computation, vol. 8, pp. 1092-1107, 2012.
[5] C. Y. Han, "Nonexistence of rational rotation-minimizing frames on cubic curves," Computer Aided Geometric Design, vol. 25, pp. 298-304, 2008.
[6] S. Yılmaz and M. Turgut, "A new version of Bishop frame and an application to spherical images," Journal of Mathematical Analysis and Applications, vol. 371, pp. 764-776, 2010.
[7] O. Keskin and Y. Yayl1, "An application of N-Bishop frame to spherical images for direction curves," International Journal of Geometric Methods in Modern Physics, vol. 14, pp. 1750162, 2017.
[8] B. Bükcü and M. K. Karacan, "Special Bishop motion and Bishop Darboux rotation axis of the space curve," Journal of Dynamical Systems and Geometric Theories, vol. 6, pp. 27-34, 2008.
[9] B. Bükcü and M. K. Karacan, "The slant helices according to Bishop frame," International Journal of Computational and Mathematical Sciences, vol. 3, pp. 67-70, 2009.
[10] E. Damar, N. Yüksel and A. T. Vanll, "The ruled surfaces according to the type-2 Bishop frame in E^{3}, " International Mathematical Forum, vol. 12, pp. 133-143, 2017.
[11] A. Kelleci, M. Bektaş and M. Ergüt, "The Hasimoto surface according to bishop frame," Adlyaman Üniversitesi Fen Bilimleri Dergisi, vol. 9, pp. 13-22, 2019.
[12] S. Kızıltuğ, S. Kaya and O. Tarakcı, "The slant helices according to the type-2 Bishop frame in Euclidean 3-space," International Journal of Pure and Applied Mathematics, vol. 2, pp. 211-222, 2013.
[13] A. Çakmak and V. Şahin, "Characterizations of Adjoint Curves According to the alternativeMoving Frame", Fundamental Journal of Mathematics and Applications, vol. 5, pp. 42-50, 2022.
[14] M. Masal and A. Azak, "The Ruled Surfaces According to the type-2 Bishop Frame in the Euclidean 3Space $E^{3}, "$ Mathematical Sciences and Applications E-Notes, vol. 3, pp. 74-83, 2015.
[15] M. Masal and A. Azak, "Ruled surfaces according to Bishop frame in the Euclidean 3 -spaces," Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, vol. 89, pp. 415424, 2019.
[16] S. Ouarab, A. Ouazzani and M. Izıd, "Ruled surfaces with alternative moving frame in Euclidean 3space," International Journal of Mathematical Sciences and Engineering Applications, vol. 12, pp. 4358, 2018.
[17] H. K. Samancı and M. İncesu, "Investigating a quadratic Bezier curve due to NCW and N-Bishop frames," Turkish Journal of Mathematics and Computer Science, vol. 12, pp. 120-127, 2020.
[18] H. K. Samancı and M. Sevinç, "N-Bishop Çatııına Göre Regle Yüzeylerin Bazı Karakterizasyonları," Karadeniz Fen Bilimleri Dergisi, vol. 12, pp. 113-134, 2022.
[19] B. Uzunoğlu, İ. Gök, and Y. Yayll, "A New approach on curves of constant precession," Applied Mathematics and Computation, vol. 275, pp. 317-323, 2016.
[20] S. Yılmaz and Ü. Z. Savcı, "A New Version Darboux Vector and Characterization Some Special Curves According to the type-2 Bishop Frame in E^{3}," Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, vol. 87, pp. 355-362, 2017.
[21] S. Şenyurt, S. Gür Mazlum, D. Canlı and E. Çan, "Some special Smarandache ruled surfaces according to the alternativeframe in E^{3}, " Maejo International Journal of Science and Technology, vol. 17, pp. 138-153, 2023.
[22] E. Salkowski, "Zur transformation von raumkurven," Mathematische Annalen, vol. 66, pp. 517-557, 1909.
[23] J. Monterde, "Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion, "Computer Aided Geometric Design, vol. 26, pp. 271-278, 2009.
[24] S. Gür Mazlum, S. Şenyurt and M. Bektaş, "Salkowski Curves and Their Modified Orthogonal Frames in E^{3}, " Journal of New Theory, vol. 40, pp. 12-26, 2022.
[25] S. Şenyurt and B. Öztürk, "Smarandache curves according to the Sabban frame belonging to spherical indicatrix curve of the Salkowski curve," Tbilisi Mathematical Journal, vol. 13, pp. 111-131, 2020.
[26] S. Gür and S. Şenyurt, "Frenet vectors and geodesic curvatures of spheric indicatrix curves of Salkowski curve in E^{3}, " Hadronic Journal, vol. 33, pp. 485-512, 2010.
[27] J. Monterde, "The Bertrand curve associated to a Salkowski curve," Journal of Geometry, vol. 111, pp. 21, 2020.
[28] S. Deshmukh, A. Alghanemi and R. T. Farouki, "Space curves defined by curvature-torsion relations and associated helices," Filomat, vol. 33, pp. 4951-4966, 2019.

[^0]: * Corresponding author: sumeyyegur@gumushane.edu.tr

