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The problem of controlling the vibrations of a string by a discrete applied force is 

considered. The vibrations of the string are modeled by the linear wave equation and 

the control is provided by an added force term. The wave equation is solved for 

controlled and uncontrolled cases with and without control force term. The applied 

force is chosen to be proportional to string displacement at some specified point.  In 

the controlled case; the wave equation involves a control parameter (gain) and related 

terms involving the value of the displcement at a single point and a delta function. 

This makes the equation quite different from the usual wave equation. The problem 

is solved analytically using a modified (compared to usual wave equation) solution 

procedure and an equation relating the string eigenfrequencies to the proportionality 

constant (gain) is derived.  This allows the observation of the change in 

eigenfrequencies with the gain.  Finally, examples of uncontrolled and controlled 

responses are presented, graphically. The results show that the resonances can be 

avoided by the applied control procedure. 

 
1. Introduction 

 

Distributed control conceivably has important 

applications in many areas including aerospace 

technology.  For example, the problem of 

controlling the panel flutter is receiving attention 

due to its occurrence at high speeds.  The specific 

difficulty of distributed control comes from its 

being modeled by partial differential equations.  

One way of circumventing this is to discretize the 

system by some numerical method and apply the 

well-known methods of lumped-parameter 

control.  This, however, has the danger of losing 

some of the physics in the problem. 

 

Pointwise control refers to the measurement and 

actuation processes being performed at certain 

points (and not at continuous intervals) within the 

problem domain.  This type of control design is 

more realistic to be implemented in real-life 

problems. Several problems relating to the 

pointwise control on elastic structures, parabolic 

equations and the wave equation were considered 

by You [1], Sadek [2], Wang [3], Cherid et al. 

[4], Droniou and Raymond [5], Sadek et al. [6], 

Guo and Xie [7], Beauchard [8] and Ouzahra [9]. 

Nguyen and Raymond [10] attempted to apply 

pointwise control concept to a fluid mechanics 

problem. Recently, Sirota and Halevi [11] 

investigated the control of a membrane (two-

dimensional wave equation) using Laplace 

transforms and transfer functions.  In a more 

recent study, Latas [12] investigated the 

suppression of the waves traveling along a 

moving string by distributed force.   

 

In this article, we will consider a control problem 

related to the one-dimensional wave equation 

which might be thought of as governing the 

vibrations of a string (among other things).  

Measurement and actuation will be performed on 

two points on the string, which may be identical. 

The controlled wave equation will involve one 

(or possibly more) control term that includes the 
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value of the physical variable (displacement of 

string) to be controlled, measured at one point.   

 

Therefore, the resulting mathematical problem 

(Eq.(5)) is not the usual wave equation since it 

involves the value of the displacement at one 

point combined with a delta function as an extra 

term.  To solve this problem, the usual solution 

procedure of expanding the displacement field in 

terms of the eigenfunctions of the spatial part of 

the problem will be modified as explained in the 

next section.  The controlled problem still has 

eigenfrequencies and eigenfunctions, but the 

eigenfunctions may no longer be orthogonal.  In 

that case, the eigenfunctions will be 

orthogonalized using the Gram-Schmit 

procedure.  The controlled eigenfrequencies are 

also different from the usual wave equation 

eigenfrequencies, and the values of the controlled 

eigenfrequencies can be modified by inserting a 

control parameter (a constant, gain) into the 

control term.  This procedure makes it possible to 

avoid any possible resonances by simply 

changing the control parameter. 

 

The paper is organized as follows. In Chapter 2, 

the problem description and the response of the 

string both with and without the control term are 

given. In Chapter 3, the response of the string 

under an external force, both without the control 

term and with the control term are presented. 

Finally, in Chapter 4, graphical solutions for all 

mentioned cases will be provided. 

 

2. Problem Formulation and Solution 

 

Consider a string of length one pinned at both 

ends, at x = 0  and  x = 1 as shown in Figure 1. 

 

We assume that the problem is suitably 

nondimensionalized so we do not have to worry 

about certain parameters like the length of the 

string, material properties, and applied forces. 
 

 

Figure 1. Geometry of the structure.  

 

The small vibrations of the string are governed 

by 

 
𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2 = 0     (1) 

 

where  𝑢(𝑥, 𝑡) denotes the displacement of the 

string.  We set the wave velocity equal to one 

because of nondimensionalisation.  The 

boundary conditions at the pinned ends are 

 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0    (2) 

 

To find the eigenfrequencies, one makes the 

substitution 

 

𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑒𝑖𝜔𝑡    (3) 

 

and this gives the eigenfrequencies and the mode 

shapes as 

 

𝜔𝑛 = 𝑛𝜋, 𝑈𝑛(𝑥) = sin 𝑛𝜋𝑥, 𝑛 = 1,2,3, … (4) 

 

We apply control to this problem in the following 

manner:  displacement u is measured at some 

point 𝑥1,  at all times, and a force proportional to  

𝑢(𝑥1, 𝑡)  is applied at another point  𝑥2.  Thus the 

vibration equation in the controlled case becomes 

 
𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2 + 𝐾 𝑢(𝑥1, 𝑡)𝛿(𝑥 − 𝑥2) = 0 (5) 

 

where δ is the Dirac delta function, and K is a 

constant which can be considered as a gain.  We 

want to investigate the changes in the system as 

K is changed.  In passing, we note that a related 

problem  

 
𝜕2𝑈

𝜕𝑡2 −
𝜕2𝑈

𝜕𝑥2 + 𝐾 
𝜕𝑈

𝜕𝑡
(𝑥1, 𝑡) 𝛿(𝑥 − 𝑥2) = 0 (6) 

 

in which the control is proportional to the 

velocity, rather than displacement, was 

considered in [13-15]. For this problem, the total 

energy of the string  

 

𝐸 =
1

2
∫ [(

𝜕𝑈

𝜕𝑡
)

2

+ (
𝜕𝑈

𝜕𝑥
)

2

] 𝑑𝑥
1

0

 

 

satisfies  

 
𝑑𝐸

𝑑𝑡
= − [

𝜕𝑈

𝜕𝑡
(𝑥1, 𝑡)]

2
< 0   (7) 

𝑥 

String 

𝑥1: Measurement point 

𝑥2: Actuation point 

 



Sakarya University Journal of Science, 28(1) 2024, 169-175   

 

169 
 

Thus, total energy decreases and therefore the 

control term in Eq. (6) stabilizes the string. 

However, in the present problem (Eq.(5)) the 

control is proportional to displacement rather 

than velocity and no result similar to Eq. (7) is 

known. Thus, it is important to investigate the 

solution of Eq.(5). Again, making the 

substitution  𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑒𝑖𝜔𝑡, 

 
𝑑2𝑈

𝑑𝑥2 + 𝜔2𝑈 + 𝐾 𝑈(𝑥1) 𝛿(𝑥 − 𝑥2) = 0 (8) 

 

This equation must be solved with the boundary 

conditions 

 

𝑈(0) = 𝑈(1) = 0    (9) 

 

Since  𝑈(𝑥1)  is (an unknown) constant, 

assuming 

 

𝑈(𝑥) = 𝐶1(𝑥) cos 𝜔𝑥 + 𝐶2(𝑥) sin 𝜔𝑥        (10) 

 

where 𝐶1(𝑥)  and  𝐶2(𝑥) are functions to be 

found, we obtain the solution satisfying the 

boundary conditions as 

 

𝑈(𝑥) =
𝐾

𝜔
 𝑈(𝑥1) [sin 𝜔(𝑥2 − 𝑥)  ℎ(𝑥 − 𝑥2) +

sin 𝜔(1−𝑥2)

sin 𝜔
sin 𝜔𝑥]                                       (11) 

 

where h is the unit step function.  Setting  𝑥 = 𝑥1 

in the above solution gives the eigenvalue 

equation, 

 

1 =
𝐾

𝜔
[sin 𝜔(𝑥2 − 𝑥1)  ℎ(𝑥1 − 𝑥2) +

sin 𝜔(1−𝑥2)

sin 𝜔
sin 𝜔𝑥1]                                           (12) 

 

Roots  𝜔𝑛 of this equation are eigenvalues with 

the corresponding eigenfunctions given by 

Eq.(11), ignoring the factor in front, 

 

𝑈𝑛(𝑥) = sin 𝜔𝑛(𝑥2 − 𝑥)  ℎ(𝑥 − 𝑥2) +
sin 𝜔𝑛(1−𝑥2)

sin 𝜔𝑛
sin 𝜔𝑛𝑥                                          (13) 

 

From Eqs. (8) and (9), we obtain 

 

∫ 𝑈𝑚(𝑥)𝑈𝑛(𝑥)𝑑𝑥
1

0
= 𝐾 

𝑈𝑚(𝑥1)𝑈𝑛(𝑥1)

𝜔𝑛
2 −𝜔𝑚

2 (
sin 𝜔𝑛𝑥2

sin 𝜔𝑛𝑥1
−

sin 𝜔𝑚𝑥2

sin 𝜔𝑚𝑥1
)  for 𝑛 ≠ 𝑚                                     (14) 

 

so that  𝑈𝑛(𝑥) are not orthogonal unless 

measurement and actuation are at the same point, 

i.e.,  𝑥1 = 𝑥2. To clarify further discussion, 

assume that  𝑥1 < 𝑥2  thus ℎ(𝑥1 − 𝑥2) = 0 and 

the eigenvalue equation becomes 

 

𝜔 sin 𝜔 − 𝐾 sin 𝜔𝑥1 sin 𝜔(1 − 𝑥2) = 0   (15) 

 

For  𝐾 = 0  this gives the same eigenvalues as in 

Eq.(4), the uncontrolled case, while for  𝐾 = ∞ , 

the eigenvalues are 

 

𝜔𝑛 =
𝑛𝜋

𝑥1
  ,𝜔𝑚 =

𝑚𝜋

1−𝑥2
   ,   𝑚, 𝑛 = 1,2,3, …  (16) 

 

Eigenvalues change smoothly between Eqs.(4) 

and (16) as  K  takes values between  0  and  ∞.  

This allows us to shape the output of the system. 

 

3. Uncontrolled and Controlled Response 

 

In this section we will compute the response of 

the string to an external force with and without 

the control action under zero initial conditions.  

For the uncontrolled string 

 
𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2 = cos 𝜋𝑡 sin 𝜋𝑥                           (17) 

 

with the boundary and initial conditions 

 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 
𝑢(𝑥, 0) = 𝑢𝑡(𝑥, 0) = 0            (18) 

 

The solution of Eqs. (17) and (18) is: 

 

𝑢(𝑥, 𝑡) =
1

4𝜋
[cos 𝜋𝑡 − cos 3𝜋𝑡 −

2𝑡 sin 𝜋𝑡] sin 𝜋𝑥                                               (19) 

 

The presence of  cos 𝜋𝑡  in the external forcing 

term (Eq.(17)) causes a resonance and the 

response, Eq.(19), blows up with time.  The aim 

of control, in this case, will be to suppress the 

unboundedly growing vibrations of the string. 

The controlled response is governed by 

 
𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2 + 𝐾 𝑢(𝑥1, 𝑡)𝛿(𝑥 − 𝑥2) =

cos 𝜋𝑡 sin 𝜋𝑥                                                     (20) 

 

with the same conditions Eq.(18). We will take 

the gain constant as  𝐾 = 2  and examine the 
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response for two different cases of measurement 

and actuation: 

 

(1) Measurement and actuation are at the 

same point:  𝑥1 = 𝑥2 = 1/3 

 

In this case the eigenfunctions, Eq.(13), are 

orthogonal; expanding the solution as 

 

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛(𝑡)𝑈𝑛(𝑥)∞
𝑛=0                           (21) 

 

we find that the time factors satisfy 

 
𝑑2𝑝𝑛

𝑑𝑡2 + 𝜔𝑛
2𝑝𝑛 = −𝛼𝑛 cos 𝜋𝑡                           (22) 

 

𝑝𝑛(0) =
𝑑𝑝𝑛

𝑑𝑡
(0) = 0                                     (23) 

 

where 

 

𝛼𝑛 =
∫ sin 𝜋𝑥 𝑈𝑛(𝑥)𝑑𝑥

1
0

∫ [𝑈𝑛(𝑥)]21
0 𝑑𝑥

                                          (24) 

 

The solution is, unless  𝜔𝑛 = 𝜋, 

 

𝑝𝑛(𝑡) =
𝛼𝑛

𝜔𝑛
2 −𝜋2

(cos 𝜔𝑛𝑡 − cos 𝜋𝑡)               (25) 

 

(2) Measurement and actuation are at 

different points: 𝑥1 = 1/3 ,       𝑥2 = 2/3 

 

In this case the eigenfunctions are not 

orthogonal. But we can orthogonalize them using 

the Gram-Schmidt procedure. Naming the 

orthogonalized eigenfunctions  𝜑𝑛(𝑥) ; these 

satisfy the same Eqs.(8) and (9).  Expanding the 

solution as 

 

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛(𝑡)𝜑𝑛(𝑥)∞
𝑛=0                         (26) 

 

The time factors again satisfy Eqs.(22), (23) and, 

(24) with 𝑈𝑛 replaced by 𝜑𝑛, and the solution is 

given by Eq.(25) with 𝑈𝑛  replaced by 𝜑𝑛. 

 

4. Results and Discussion 

 

For both cases (1) and (2), five mode shapes were 

used in evaluating the response. The calculations 

are performed analytically using Wolfram 

Mathematica. The calculations for case (2) are 

shown in Figure 2 as an example. Table 1 lists 

the eigenvalues for the uncontrolled and the two 

controlled cases mentioned above for 

comparison. 

 

 
Figure 2. A Sample calculation. 

 

Table 1. Eigenfrequencies for uncontrolled and 

controlled string 

Uncontrolled Case 1 Case 2 

3.141593 2.67206 3.64467 

6.283185 6.49607 6.00458 

9.424778 9.42478 9.42478 

12.566371 15.6081 12.4511 

15.707963 18.8496 15.7996 

 

Figure 3 shows the uncontrolled time-response 

for the mid-point of the string which blowsup 

while making sinusoidal vibrations. 
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Figure 3. Uncontrolled response to sinusoidal 

forcing  

 

Figure 4 shows the displacement in time of the 

mid-point of the string when the measurement 

and the actuation are at the same point 𝑥1 = 𝑥2 =
1/3. The unbounded growth has been suppressed 

and the mid-point makes periodical vibrations in 

time.  

 

 
Figure 4. Controlled response when measurement 

and actuation are at the same point  

 

Figure 5 and Figure 6 show the shape of the string 

at various times; there is a sharp change in slope 

at 𝑥 = 𝑥1 = 𝑥2 = 1/3. 
 

 
Figure 5. Shape of string at various times; 

controlled case (t < 1)  

 

Figure 7 shows the displacement in time of the 

mid-point of the string when the measurement is 

at  𝑥1 = 1/3  and the actuation is at  𝑥2 = 2/3.  

The response is similar to the case (1). 

 
Figure 6. Shape of string at various times; 

controlled case (t ≥ 1)  

 

 
Figure 7. Controlled response when measurement 

and actuation are at different points 

 

Similarly, Figure 8 and Figure 9 show the shape 

of the string at various times. In this case, there 

is a sharp change in slope at 𝑥 = 𝑥2 = 2/3  

where the control is applied. But the string shape 

is smooth at 𝑥 = 𝑥1 = 1/3 where the 

measurement is made. 

 
Figure 8. Shape of string at various times; 

controlled case (t < 1) 

Finally, a few remark concerning the control 

effort (the size of the controlling force) should be 

made.  This quantity is 𝐾 𝑢(𝑥1, 𝑡) and K was 

taken to be 2.  Fig. 10 shows this for the case 

measurement and actuation points are the same, 
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i.e., 𝐾 𝑢 (
1

3
, 𝑡) . Control force is basically twice 

the diplacement, but since the controlled 

displacement is smaller, the control effort also 

gets smaller. 

 

 
Figure 9. Shape of string at various times; 

controlled case (t ≥ 1) 

 
Figure 10. Control force as a function of time when 

actuation and measurement are at x=1/3 

 

The controlled response can further be shaped by 

varying the constant K, the measurement and 

actuation points and more importantly, utilizing 

pointwise velocity-feedback, i.e., adding another 

control term to the right-hand side of Eq. (5) or 

(20) proportional to the time derivative of the 

displacement at possibly another point. 

 

5. Conclusion 

 

The vibrations of a string were controlled by 

applying the pointwise control concept: the string 

displacement was measured at a single point and 

a force proportional to this displacement is 

applied at another (or the same) point.  The 

resulting controlled wave equation was solved 

analytically. The usual solution procedure 

namely, eigenfunction-expansion method 

modified and resulting non-orthogonal 

eigenfunctions were orthogonalized using the 

Gram-Schmit procedure. This analytical solution 

allows to carry out numerical experiments on the 

system for various input forms.  As an example, 

the system was forced by an input that drives the 

uncontrolled system to resonance, causing 

growing sinusoidal vibrations.  The controlled 

system suppresses the growth in vibrations and 

results in a bounded periodic output.  As a result, 

it can be inferred that resonances can be avoided 

by the control procedure outlined here.  

Furthermore, it should be emphasized that 

pointwise control is a more realistic method to 

control such distributed parameter systems as 

considered here since it is impossible to actually 

measure the displacement field, as well as apply 

control forces, in a continuous interval. Only one 

measurement and one actuation point were 

considered here.  By measurement and actuation 

at more points, better results may be obtained 
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