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ABSTRACT  

Rhythmic motion is observed in a variety of different field 

including physical, chemical and biological systems. Neural 

system, that consists of billions of neurons are also exhibited 

periodic motion. Phase Response Curves (PRCs); act like a 

bridge between, a single neuron and neural network; briefly 

measure change in period of oscillation by giving perturbation 

at different points of oscillation. PRCs can determined from 

measurements of electrical activities of neurons by 

experimental methods or theoretically derived from three 

different methods. As far as we know from the literature, these 

three different methods have never been used at the same time 

before. The main purpose of this computational study is to the 

obtain Phase Response Curve by three different methods and 

compare them in terms of simulation times and peak to baseline 

ratio. First, the kinds of excitability of neurons, the types of 

Phase Response Curve and peak to baseline ratio are 

mentioned. After then, these three different methods to obtain 

PRC are explained deeply. At a final step, Phase Response 

Curves are obtained from three theoretical methods and 

compared regarding to peak to baseline ratio, simulation time 

and applicability. 
 

 

Keywords: Phase response curve, direct method, linear adjoint 

method, adapted direct method. 

 

 

Üç farklı metot kullanarak sinir hücrelerinin faz 

resetleme eğrilerinin incelenmesi 
 

ÖZ 

Ritmik hareket fiziksel, kimyasal ve biyolojik sistemleri 

ihtiva eden farklı alanların birçoğunda görülmektedir. 

Milyarlarca nöronlardan oluĢan sinir sistemi periyodik hareket 

sergilemektedir. Faz Resetleme Eğrileri (PRCs), tek bir nöron 

ve nöron ağı arasında bir köprü gibi rol oynar ve kısaca farklı 

salınım noktalarında verilen uyarıcılar ile salınım 

periyodundaki değiĢimi ölçer. PRC’ler deneysel olarak 

nöronların elektriksel aktivitelerinin ölçümlerinden ya da teorik 

olarak türetilen üç farklı metottan hesaplanabilir. Literatürden 

bildiğimiz kadarıyla bu üç farklı teorik metot daha önce aynı 

anda hiç kullanılmamıĢtır. Bu hesaplamalı çalıĢmanın ana 

amacı üç farklı metot ile Faz Cevap Eğrilerini teorik olarak elde 

etmektir ve onları simülasyon süreleri ve tavan-taban oranları 

açısından kıyaslamaktır. Ġlk olarak nöronların uyarılabilirlik 

çeĢitleri, PRC’lerin çeĢitleri ve tavan-taban oranı 

bahsedilmiĢtir. Daha sonra PRC elde etmekte kullanılan üç 

farklı metot açıklanmıĢtır. Son aĢamada üç teorik metotla Faz 

Resetleme Eğrileri türetilmiĢtir ve elde edilen Ģekiller tavan-

taban oranı, simülasyon süresi ve uygulanabilirliği açısından 

karĢılaĢtırılmıĢtır. 

 

Anahtar Kelimeler: Faz tepki eğrisi, direkt metot, lineer 

adjoint metot, uyarlanmıĢ direkt metot. 

 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 

1. INTRODUCTION 

 

Oscillating systems is in everywhere we encounter 

without realizing in everyday life. Some examples of 

oscillating systems from biology, chemistry, physics and 

engineering are single nerve cell that generates action 

potential
1-4

, heart beat rhythm
5,6

, human walking 

motion
7,8

, circadian clock
9,10

, oscillation in chemical 

reactions
11,12 

and earthquake dynamics.
13 

In short, 

systems with dynamical elements that compose of 

spontaneous rhythms are used for Phase Response 

Curves (PRCs).
14

 

Self-sustained oscillators have been proposed firstly 

by Andronov and Vitt in 1937 and are one of the areas 

that are of interest in the researchers working on dynamic 

systems. The most important feature of the self-sustained 

release is that it continues to oscillate with its own 

rhythm when abstracted from the environment.
15

 In a 
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clearer sense, they continue to oscillate without exerting 

a force on the system. Self-sustained oscillations can be 

represented geometrically by a stable limit cycle.
16 

The 

stable limit cycles are stable against to small amplitude 

external forces. The oscillating systems do not occur if 

the limit cycle does not occur, and so PRC cannot be 

mentioned.
17

 

Neurons are the basic operators and information-

carrying units of the central nervous system. A single 

neuron cell emits periodically spikes when the externally 

applied current value rises above a certain threshold 

value, and the frequency of spikes increases with 

increasing amplitude of the applied current.
18,19

 Nerve 

cells at different points of the brain come together with 

complicated connections and emit spikes synchronously. 

This mechanism forms basis of fundamental 

physiological functions of the human such as attention 

and short-term memory.
17,20 

Although synchronous 

rhythm is a key specification of the human nerve system, 

the decreasing abnormal synchrony can cause 

Schizophrenia
21-23

 and Alzheimer
24,25

, and the increasing 

abnormal synchrony can also lead Parkinson
26-28

 and 

Epilepsy.
29,30 

These neurodegenerative diseases have also 

attracted the  attention  of the scientists that focus on 

biotechnological studies. Moreover, some institutes 

consider computational neuroscience as a subtopic of 

biotechnology. Phase response curve for 24-hour day 

rhythms is named as circadian clock. The scientists have 

won the Nobel Prize of 2017 year in physiology and 

medicine for their discovery of molecular mechanism 

controlling circadian rhythm.
31 

For these reasons, it is 

very important to examine the PRCs which is related to a 

single neuron cell, the behaviour of the neuron network, 

and circadian rhythm. 

The PRC is one of the most important tools for 

investigating the dynamic structure of neurons. In the 

self-sustaining oscillation, the period of oscillating 

system dividing equally spaced phases according to a 

particular reference point and PRC measures how small 

perturbation given in different phases change the period 

of oscillations. The shape of PRC provides invaluable 

information about excitability of neurons, oscillation 

stability and synchrony in the neural network.
32-38 

Shape 

of PRCs can be obtained from two different fundamental 

methods. The first method (i.e. experimental method) is 

the measurement of electro-activity of nerve cells.
39-46 

The second method is to calculate PRC theoretically. To 

best of our knowledge, there are only three different 

theoretical ways to derive PRC and these three main 

ways have not been examined together. 

In this study, firstly the types of excitability of 

neurons are examined and then peak to baseline ratio is 

investigated.  Direct method, linear adjoint method and 

adapted direct method are examined in shortly. PRC of 

single neuron calculated by using these three different 

methods, their required time interval, and peak to base 

line ratios are compared.  

 

2. MODEL AND METHODS 

In our study, INa,p + IK model is used to simulate the 

neuron. This model is consist of sodium, potassium and 

leak current and it is similar to Morris Lecar model.
2   

INa,p + IK model is represented by two nonlinear 

differential equations and it is considered as a simplified 

version of Hodgkin Huxley model. Nowadays, Hodgkin 

Huxley type models are known as conductance-based 

models. In all conductance-based models, the 

electrochemical processes at the current generation and 

signal transmission in a neuron are replaced by a 

facilitated electrical circuit.
47 

Equations of the models 

are: 

 

 
  

  
        (    )       ( )(     )  

   (    )                   (1a) 

 

 

      (   ( )   ) (   ( ))   (1b)

    

 In Eq. (1a), Iapp implies external applied current and C 

represents membrane capacitance. The conductance 

values of sodium, potassium and leak currents,        

      ,      ,         , respectively. The 

reversal potentials of sodium and potassium are 60 mV 

and -90 mV. In Eq. (1b), the numerical value of tau(V) is 

equal to one. The values of    ( ) and     ( ) are 

calculated from Eq. (2),  

 

   ( )          *(   ⁄   )  }⁄                 (2) 

 

Parameters obtained for different types of excitabilities 

are given in Table 1. 

 
    Table 1. Some parameters of  INa,p +  IK model with different 

    excitability 

 Type-1 

excitability 

Type-2 

excitability 

 k    ⁄  k    ⁄  

   ( ) 15 -20 (mV ) 15 -20 (mV) 

   ( ) 5 -25 (mV) 5 -45 (mV) 

 EL -80 -78 

 

The model equations and model parameters are 

obtained from Izhikevich’s book.
2
 In this paper, all 

simulations were performed using a personal laptop, with 

10.0 GB RAM and 2.4 GHz Intel i5 processor. 

Moreover, solutions of differential equations were 

performed by using the ode45 function (implements 

fourth order Runge-Kutta numerical integration 

algorithms) in MATLAB software (R2012b) on a 64-bit 

mac osx operation systems.  
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Figure 1. The types of excitation derived from the INa,p  +  IK model and the applied current: a) Excitability Type-1,   

b) Excitability Type-2, c) Change of applied current with time. 

 

 

2.1. Types of excitability 

 

Nerve cells were stimulated under different voltages 

applied by using, INa,p + IK  model, and the obtained 

parameters are given in Table 1. The frequencies versus 

currents applied are plotted in Figure 1.  The nerve cell 

first time emits spike before the applied current reaches 5 

pA and as the applied current increases, the spike 

frequency also increases. This type of excitability is 

known as Type-1 Excitability
48,49

 and it is shown in 

Figure 1a. On the other hand, if the nerve cell does not 

emit spikes linearly with the applied currents and the 

frequency and applied current are relatively high when 

the nerve cell first time emits spike in Type-2 

Excitability.
50 

Figure 1b illustrates Type-2 Excitability. 

Applied current is increased linearly with simulation time 

and it is given in Figure 1c. To sum up, as indicated in 

Table 1, the excitability of INa,p + IK  model changes with 

only changing values of two parameters that are V1/2 and 

EL.  

 

2.2. Types of PRCs 

 

 Excitability types of INa,p + IK model by using 

parameters in Table 1 and their corresponding PRC types 

are  shown  in  Figure 2.  Generally, Type-1  PRC  has an  

 

 

either positive or negative single curve, but Type-2 PRC 

is represented by both the combination of positive and 

negative parts. The Type-1 and Type-2 PRCs are 

illustrated in Figures 2a and 2b, respectively.   

 

 

2.3. Peak-to-baseline ratio 

 

 Peak-to-baseline ratio is applicable for only Type-2 

PRCs and it is given by Eq. (3)
51

,  

 

 

  
       

       
       (3)

       

 

At Eq. (3), r implies peak-to-baseline ratio, 

          represent early and late peak amplitude of 

PRC. Since Type-2 PRCs are composed of two different 

sign peaks,           are opposite signs. The magnitude 

of           could be easily found from PRC curve.
52

 

The general shape of Type-2 PRC is given in Figure 3a. 

The corresponding PRC value of early peak is positive 

and the late peak is negative. The shape of Type-2 PRC 

in Figure 3a is derivated from INa,p + IK  model, and the 

early (first) peak is positive and it is represented by   .  
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Figure 2. PRC types of INa,p+ IK model: a) PRC Type-1,  b) PRC Type-2. 

 

 

 

Figure 3. a) Peak-to-Baseline Ratio of PRC Tip-2, b) The first peak of PRC, c) The second peak of PRC.

 

The late peak is negative and it is represented by   . 

The early peak is illustrated in Figure 3b and the late 

peak is shown in Figure 3c.   

In this study, phase response curves of INa,p + IK  

model are theoretically calculated by using three 

different methods and their simulation times and peak-to- 

 

baseline ratios are calculated. Direct method, linear 

adjoint methods and adapted direct method are the used 

methods. To best of our knowledge, these three different 

methods have not been used and compared together, so 

far.  

 



 

Int. J. Chem. Technol. 2018,  2(1), 1-9                                                                                                                                                    Eskalen and Özğan 

 

5 

 

2.4. Direct method 

 

 Suppose the period of self-sustained oscillation is 

equal to T and the period of the oscillation after the short 

perturbation is equal to T. The PRC can be calculated 

with direct method by using Eq. (4), 

 

    
    

 
           (4)

       

 The first step to find PRC by using direct method is 

to stimulate self-sustained oscillation for long enough to 

find initial condition independent solution, i.e. to find 

limit cycle solution. After then, the time interval for one 

period oscillation is found, and this period is divided into 

certain points. Voltage and gating variable values for 

these certain points are determined. The short 

perturbation is given to this oscillating system and their 

voltage and gating variables are found. By using these 

variable corresponding period points determined. By 

using time difference between oscillations before and 

after perturbation, phase response values of one point is 

obtained and also by giving perturbation at different 

point of oscillation, phase response curve is obtained.  

Figure 4a illustrates voltage versus time graph of   

INa,p + IK  model. The small amplitude, 6 pA, perturbation 

current is given at 28
th

ms during 0.5 ms. The magnitude 

of perturbation is 0 pA other than 28
th 

ms, this red 

colored current perturbation curve is given at the voltage 

axis to only more clearly show the time of the 

perturbation (Figure 4a). Although the model emits spike 

periodically before perturbation, the model emits spike 

early after this perturbation. Figure 4a also illustrates the 

behaviour of the model if no perturbation was given. The 

negative and different amplitude perturbation is given at 

the different time point as shown in Figure 4b. At the 

45.5
th

ms-14 pA square pulse current applied to oscillator 

during 0.8 ms. As shown in this figure, the period of 

oscillation changed very slightly with this perturbation. 

The voltage-time graph zooms in at the insert. Figure 4c 

shows limit cycle attractor, the initial condition of the 

oscillator and applied perturbation point of the negative 

amplitude current, -14 pA, in more detail.  

Although direct method (see Eq. (4)) is a simple 

method, this method is not exactly correct.
53

 Since the 

magnitude and duration of applied current could change 

or different for varied oscillators and these are important 

factors which directly change shape of PRCs. 

 

 

2.5. Linear adjoint method 

 

The used neural model is composed of two equations, 

Eq.  (1a) and Eq. (1b), the detailed description mentioned 

above. These two equations imply 2-dimensional state 

space   (     ). The INa,p + IK  model can be written 

as follow, 

 
 

  
   ( )       (5)

       

 Assume that this system moves on stable limit cycle 

attractor with a period of T. The angular velocity of this 

system is w=2/T and   (      ( )). The phases of 

points in the limit cycle can be converted to the length of 

limit cycle, angle and time. If the phases of points are 

converted to time mode, the phase of any point on limit 

cycle is written as 

 

    (      )      ( )  [    )    (6)

       

At Eq. (6),  represents the phase of point, w implies 

angular velocity, and t represents time. It is also possible 

to find phases of the point which are not on limit cycle 

but attract it with time. The small perturbation given to 

limit cycle attractor which generates the basis of PRC is 

given by  

 
 

  
   ( )     ( )      (7)

      

   

At Eq. (7), P(t) represents small perturbation. Eq. (8a) 

represents phase model of weakly connected oscillators. 

Phase deviation is given by  and the period of 

oscillations is the same for all oscillators.
2 

Eq. (8b) 

represents time derivative of phase model given in Eq. 

(8a).  

 

 ( )     ( )     (8a)

      

 ̇( )     ̇( )     (8b)

      

 

Eq. (9) shows the parameters related to the derivative of 

phase deviation. In this equation, P(t) implies small 

amplitude perturbation, Q() represents phase response 

curve, in other words, Q() implies the sensitivity of 

phase of (t) to perturbation P(t).
54

 

 

 ̇( )   ( ( )) ( )      (9) 

 

 

If the value of Eq. (9) is written in Eq. (8b), Eq. (10) is 

obtained.  

 

 ̇( )     ( ( )) ( )    (10) 

 

At this equation, Q is a solution of linear adjoint equation 

with a function of T-period.   
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Figure 4. Voltage-time graph of the neuron model: a) Positive stimulus, b) Negative stimulus, c) Change of limit cycle. 

 

 

 

 At Eq. (11a), {  ( ( ))}
 
is the transposed Jacobian 

matrix of function F on the limit cycle attractor at the 

point X(t). Eq. (11b) represents the initial condition of the 

system.  

 

 ̇   {  ( ( ))}
 
                (11a)

      

 ( )  ( ( ))                  (11b)

       

 Adjoint method has centered on Malkin’s approach.
55 

Calculated PRC must be periodic, i.e. Q(T)=Q(0), 

because of this reason, the direct integration of this 

equation is not suitable due to boundary value problem.
53

 

To find the periodic solution of Eq. (11a) is integrated 

backward in time.
32,56 

The proof of adjoint equation
55 

and 

invaluable studies for obtaining PRC are available at the 

selected papers.
2,14,57

 

 

 

2.6. Adapted direct method 

 

 Adapted Direct Method proposed by Novi enko and 

Pyragas was tested for different neural models. The 

results of  these  tests show that adapted directed method  

up to 10 to 100 times faster than linear adjoint method.
53

 

Although linear adjoint method getting very slow at the 

situation when the limit cycle is near to bifurcation point, 

the speed of adapted direct method does not depend on it. 

Adapted direct method described by 

 

   ( )  
  ( )

  
 ( ) ( )

    (12)

      

At Eq. (12),    is left eigenvector, and V() is equal 

to the velocity vector. The detailed proof of this method 

can be found from Novi enko study.
53

 PRC is calculated 

by using this method by means of the Viktor Novi enko 

software code. So, the computation of PRC is done 

numerically by the help of this software code.
58

 

 

 

3. RESULTS 

 

The PRCs of INa,p + IK  model were calculated by the help 

of three different methods and the results are given in 

Figure 5. The PRCs calculated  by using direct method, 

linear adjoint method and adapted direct method are 

illustrated in Figure5a-c, respectively. Although the 

shapes  of  numerically  calculated  PRCs  were similar to 
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Figure 5. Phase response curves: a) Direct method, b) Linear adjoint method, c) Adapted direct method. 

 

each other’s, they were not exactly the same. The 

calculated phase response values of direct method are 

approximately ten times smaller than the other methods. 

The magnitude of the early and late peak of PRC was 

biggest at the linear adjoint method. These PRCs were 

calculated by using Type-2 excitability parameters  

(Table 1), and 35 pA external current applied.  

The results of early and late peaks, peak-to-baseline 

ratios and required time intervals are given in Table 2 for 

these three methods. The required simulation time for 

direct method was approximately 190 times longer than 

adapted direct method and 40 times longer than linear  

adjoint methods. This means that the PRC computation 

speed is fastest at the adapted direct method and the 

slowest calculation speed is at the direct method. Linear 

adjoint method and adapted direct method gave similar 

results considering to the peak-to-baseline ratio. It is 

assumed that the reason of varied peak to baseline ratio at 

the direct method is due to the fact that the magnitude 

and duration of perturbations are not standard at this 

model. To conclude that, in this study, at first, 

excitability types and their corresponding phase response 

curves were derived for INa,p + IK  model. The peak to 

baseline ratio is mentioned. After then, PRC of INa,p + IK  

model were calculated by using direct method, linear 

adjoint method and adapted direct method. The results of 

these three different methods were compared in terms of 

simulation speed and peak to baseline ratios. 
 

 

Table 2. The peak-to-baseline ratios and simulation times for 

the PRCs derived for Type-2 excitability of INa,p + IK model 

 Direct 

method 

Linear 

adjoint 

method 

Adapted 

direct 

method 

me 0.038 0.325 0.270 

ml -0.056 -0.708 -0.569 

Peak-to-

baseline 

ratio(   ) 

5.22 2.697 2.806 

 

Required time 

interval (s) 

 

107.85 

 

2.75 

 

0.56 

 

 This study can enlighten how to calculate PRC in 

terms of three different methods and gives the idea about 

advantage and disadvantage of these methods.  
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