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Abstract: In this paper, a unified approach for the dynamic analysis of non-uniform
piezoelectric rod is presented. It is assumed that the cross sectional area of the rod is
varying along the longitudinal axis, arbitrarily. Therefore, the partial differential equations
that govern the non-uniform piezoelectric isotropic rod in a forced vibration analysis
are obtained with a variable coefficient taking into account mechanical and electrostatic
equations. Analytical solutions of these equations are only possible for simple cross-
section areas. First, the governing equations are transformed to the Laplace space and then
solved numerically by pseudospectral Chebyshev approach for arbitrary cross-section area
under four different load functions. The final results are transformed to the time domain
using modified Durbin’s procedure. The technique is validated for simple cross-section
area results that can also be solved analytically.

Düzgün Olmayan Piezoelektrik Çubuğun Dinamik Analizi için Pratik Bir Yöntem

Anahtar Kelimeler
Zorlanmış titreşim,
Piezoelektrik çubuk,
Laplace dönüşümü,
Pseudospectral Chebyshev
yöntemi

Özet: Bu çalışmada, düzgün olmayan piezoelektrik çubuğun dinamik analizi için birleşik
bir yaklaşım sunulmaktadır. Çubuğun enine kesit alanının rastgele olarak uzunlamasına
eksen boyunca değiştiği varsayılmaktadır. Bu nedenle, zorlanmış titreşim analizinde
düzgün olmayan piezoelektrik izotropik çubuğu idare eden kısmi diferansiyel denklemler,
mekanik ve elektrostatik denklemler dikkate alınarak değişken bir katsayılı olarak elde
edilirler. Bu denklemlerin analitik çözümleri sadece basit kesit alanları için mümkündür.
İlk olarak, sistemi idare eden denklemler Laplace uzayına dönüştürülür ve daha sonra dört
farklı yük fonksiyonu altında rastgele kesit alanı için pseudospektral Chebyshev yaklaşımı
ile sayısal olarak çözülür. Nihai sonuçlar, modifiye edilmiş Durbin prosedürü kullanılarak
zaman uzayına dönüştürülür. Yöntem, analitik olarak da çözülebilen basit kesit alanına
sahip piezoelektrik çubuk sonuçları ile doğrulanmıştır.

1. Introduction

Smart materials are new generation materials that have
ability to change their properties in a particular manner in
response to specific stimulus input. Piezoelectric materials
are very common example of smart materials that are able
to deform under an electric field or produce an electric
sigmal as a result of any mechanical effect. Piezoelectric
materials, considered to be active smart materials and there-
fore, they can be used as force transducers and actuators.
These materials find application in the field of structural
engineering such as monitoring the civil engineering struc-
tures to evaluate their stability. Some materials, such as
rods and beams, are designed with variable cross-section
due to technical advantages in specific piezoelectric ap-

plications. Vibration behavior of non-uniform rods with
variable cross section were investigated extensively in the
literature [1–6]. Studies on the piezoelectricity are usually
related to finite and infinite dimensional structures in differ-
ent geometries such as thin rods, solid or hollow cylinders,
plates, discs, cylindrical shells. In the case of compli-
cated geometrical shapes and material properties, applying
numerical methods is often inevitable. Piezoelectric trans-
ducers can be treated as rods in terms of mathematical
modelling. Thus, it is important to confirm the vibration
behavior of piezoelectric rods.

Chen and Zhang [7] obtained analytical equations of a
non-uniform cross section rod. For piezoelectromagnetic
beam, one dimensional equations derived by Zhang et al.
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[8] for the flexure and extension with shear deformation
from three dimensional equations. Nadal and Pigache [9]
established accurate electromechanical model of a piezo-
electric transformer by using Hamilton’s principle to obtain
the equations of motion for free vibrations. Li and Zhifie
[10] furthered the field based on the elasticity theory and
piezoelectricity with state space based differential quadra-
ture method to the free vibrations of a functionally graded
piezoelectric beam under different boundary conditions.
By the help of piezoelectric patch actuator, active vibra-
tion controlling in structural elements like beam and plate
etc. is also promosing research area. The optimal time
dependent vibration control of the Timoshenko beam is
examined by Yildirim [11] and with damping effect by
Kucuk [12]. The optimal control is determined by using
maximum principle in their paper. The vibrations activated
by extarnal force in a rectangular plate with Kelvin-Voigt
damping are controlled by piezoelectric patch actuators
bonded two sides of the plate in Yildirim’s study [13]. He
analytically solved the problem by using Galerkin expan-
sions. In our previous studies, free [14, 15] and forced lon-
gitudinal vibrations [16] of non-uniform piezoelectric rod
is solved numerically by complementary function method
(CFM), pseudospectral Chebyshev method and analyti-
cally by Bessel functions for an arbitrary cross-section area.
Differentiation matrices that signify the approximations
at grid points play an important role in the implementa-
tion of spectral collocation methods [17]. Constructing
procedure of Chebyshev differentiation matrices with the
help of Chebyshev points (grid point) is found in [18] and
the implementation for numerical solution of convection-
diffusion problem in [19]. In this study, forced longitudinal
vibration of non-uniform piezoelectric (PZT-4) fixed-free
supported rod is solved in Laplace domain numerically
by Chebyshev pseudospectral approach for arbitrary cross-
section area under four different load functions. Durbin’s
Laplace inversion procedure is used to get the results in
the time domain [20]. Then, the numerical and analytical
consequences are compared.

2. Material and Method

Rosen type transducers provide the most efficient tools in
piezoelectric applications. The transducer consists of two
parts including a driving portion and receiving portion that
is operated by exploiting extensional vibrations of these
parts. Each of the driving portion and receiving portion
with different coordinates and under different polarization
conditions are to be considered as a piezoelectric rod.
The non-uniform piezoelectric rods polarized along
the longitudinal axis are considered for three different
cross-sectional areas: power, exponential and cosinusoidal
form [16].

Constitutive equations of piezoelectric materials that
exhibit linear behavior define electromechanical properties
and can be derived in variety ways to tailor for desired
properties [7]. Under the assumption of material properties
do not change along the x-axis, and with the consideration
of mechanical and electrostatic equations together, the
governing equation of the system can be written in the

following form [7, 14],

d2u
dx2 +

1
A(x)

dA(x)
dx

du
dx

=
ρ

c̄11

∂ 2u
∂ t2 (1)

where u is the extensional displacement, A(x) is the cross
sectional area varying along the longitudinal axis, c̄11 =

c̃11 +
ẽ2

11
ε̃11

and c̃11, ẽ11 and ε̃11 elastic, piezoelectric and

dielectric constants for longitudinal motions respectively.
Clamped-free supported rod which is electrically open on
two ends is considered, therefore the initial and boundary
conditions become,

u(x,0) = 0,
∂u
∂ t

(x,0) = 0 (2a)

u(0, t) = 0,
∂u
∂x

(l, t) =
P(t)

c̄11A(l)
(2b)

where P(t) represents load functions applied to the free
end of the rod. Four different types of loading functions
have been applied to the system: step, sinusoidal impulsive,
arbitrary and ramped [16, 21]. If Laplace transformation
is applied to Equation (1) by using initial conditions (2a),
the following ordinary differential equation is obtained

Ū ′′+P(x,s)Ū ′+Q(s)Ū = 0 (3)

with

P(x,s) =
1

A(x)
dA(x)

dx
, Q(s) =− s2ρ

c̄11

where ()′ denotes the derivative with respect to x, Ū =
U(x,s) is the Laplace transformation of u, and s is the
Laplace transform parameter. And, the transformed bound-
ary conditions (2b) written in the following way:

U(0,s) = 0,
∂U
∂x

(l,s) =
p(s)

c̄11A(l)
(4)

where p(s) is the Laplace transform of the load P(t) [16].

3. Pseudospectral Chebyshev Model

Pseudospectral Chebyshev Model used to perform forced
vibration analysis of non-uniform piezoelectric rod by re-
ferring to the study of Gottlieb [22] and Trefethen [17] that
depends on discretization the governing equations (3) with
respect to the spatial variable using pseudospectral Cheby-
shev method. With regard to collacation points, the first
order (n+1)× (n+1) Chebyshev differentiation matrix

0 = x0 < x1 · · ·< xn, with x j =
1
2
[1− cos( jπ/n)]

( j = 0,1, · · · ,n) will be denoted by D. First-order
Chebyshev differentiation matrix D provides highly
precise approxtimation to Ū ′(x j),Ū ′′(x j), ..., simply
by multiplication differential matrix with vector data
Ū ′(x j) = (D Ū) j, Ū ′′(x j) = (D2Ū) j, suchlike where Ū =
[Ū0, . . . ,Ūn]

T discrete vector data at positions x j. The com-
putation procedure of the Chebyshev differentiation matrix
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and codes as a m-file can be found in notable references,
see e.g., Trefethen [17], where the collocation points xi are
numbered from right to left and defined in [−1,1]. With
a small revision, the method can be implemented to any
interval.

3.1. Formulation

Three different cross-section forms depend on the longi-
tudinal axis are considered in this research. The cross-
sectional areas are given in the following forms:

Power form: Ap(x) = A0

(
a+b

x
l

)n
(5a)

Exponential form: Ae(x) = A0e
−nx

l (5b)

Cosinusoidal form: Ac(x) = A0 Cos2
[
a

n x
l

+b
]

(5c)

The linear ordinary differential equation in Laplace do-
main (3) is basically converted to a linear system by using
the differential matrix operator. First and second-order
derivatives in Equation (3) can be discretized with differ-
ential matrix in the following way:

dU
dx (x0,s)
dU
dx (x1,s)

...
dU
dx (xn,s)

≈ D


U(x0,s)
U(x1,s)

...
U(xn,s)

 (6)

and 
dU2

dx2 (x0,s)
dU2

dx2 (x1,s)
...

dU2

dx2 (xn,s)

≈ D2


U(x0,s)
U(x1,s)

...
U(xn,s)

 (7)

Rearranging the Equation (3) by using differential matrix
approximation,

MŪ = 0 (8)

linear equation system is obtained, where

M = D2 +P(x,s)D+Q(s) (9)

Here, P(x,s) is a variable coefficient and depending on the
cross-sectional areas. This coefficient takes the following
forms for three different cross-section:

Power form: P(x,s) =
nb

(al +bx)
,

Exponential form: P(x,s) =
n
l
,

Cosinusoidal form: P(x,s) =−2n a
l

Tan
[
a

n x
l

+b
]
.

When boundary conditions (4) are applied to this linear
system (8), nontrivial solution is obtained in Laplace space.
Then, the results are transformed into the time domain by
using inverse Laplace transformation (modified Durbin’s)
procedure.

4. Results

This section will present some numerical example showing
the capability of the presented method and also to confirm
the simulated results with analytical examinations for
constant cross-section case. For this purpose, a general
objective computer program is coded in Matlab to analyze
the forced vibration of non-uniform piezoelectric rods.
Material constants for PZT-4 was taken from [23]. The
geometrical parameters a, b are taken as 0.8, −0.2
and inhomogeneity parameter n is taken as 1, 1.5, 1.8
for the entirety of this study. The results for n = 0 are
corresponding to uniform cross-section with constant
material properties. Comparison of analytical results
are presented for uniform rod to ensure the efficacy and
adequacy of the present method and monitored in Table
1 [16]. It can be noted from Table 1, the pseudospectral
Chebyshev method results match quite well (six-digit
accuracy for N = 10) with the analytical results. Figure
3(a-l) show the displacement on the end of the rod (x = l)
for different geometrical models subjected to dynamic
loads. As shown in Figure 3(a-l), the inhomogeneity
parameter is a useful parameter for controlling the
displacement amplitude.

5. Discussion and Conclusion

In this study, a unified numerical approach for the dynamic
analysis of non-uniform piezoelectric rod is presented. It is
assumed that the cross sectional area of the rod is varying
along the longitudinal axis, arbitrarily. The numerical mod-
els of the forced vibration of non-uniform piezoelectric
(PZT-4) rods are obtained in the Laplace space and then
solved numerically by pseudospectral Chebyshev method.
Inverse transformation into the time domain is achieved by
modified Durbin’s method. It can be concluded from this
research that:

• This unified procedure can be easily applied to any
dynamical problems.

• The solution procedure has sufficient accuracy, small
computational costs and ease of application.

• In terms of design perspective, the inhomogeneity
parameter constitutes an adjustment variable for par-
ticular applications. This further enables control on
the displacement amplitude.
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Table 1. Comparison of displacement (u) at the end of the rod (x = L) for constant cross-section.(u×109)
Step Load Sinusoidal Load Arbitrary Load Periodic Load

Numeric Analytic[16] Numeric Analytic[16] Numeric Analytic[16] Numeric Analytic[16]
0.004884 0.004884 0.000350 0.000350 -0.014654 -0.014654 0.000046 0.000046
0.070423 0.070423 0.074244 0.074244 -0.096752 -0.096752 0.009464 0.009464
0.077362 0.077362 -0.017375 -0.017375 -0.167576 -0.167576 0.014953 0.014953
0.010689 0.010689 -0.053253 -0.053253 0.243588 0.243588 0.024008 0.024008
0.062570 0.062570 0.064356 0.064356 -0.016346 -0.016346 0.033869 0.033869
0.083473 0.083473 -0.003522 -0.003522 -0.212244 -0.212244 0.039452 0.039452
0.013151 0.013151 -0.061249 -0.061249 0.220716 0.220716 0.048004 0.048004
0.054286 0.054286 0.057556 0.057556 0.041104 0.041104 0.054218 0.054218
0.088319 0.088319 0.010472 0.010472 -0.256964 -0.256964 0.051812 0.051812
0.017159 0.017159 -0.066794 -0.066794 0.185620 0.185620 0.049435 0.049435
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Figure 1 (a):Step load with power form cross section
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Figure 1 (b):Step load with exponential form cross sec.
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Figure 1 (c):Step load with cosinusoidal form cross sec.
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Figure 1 (d): Sinusoidal load with power form cross sec.
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Figure 1 (e):Sinusoidal load with exponential form cross
section

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

t

-2

0

2

4

6

8

10

U

×10
-12

n=1

n=1.5

n=1.8

Figure 1 (f):Sinusoidal load with cosinusoidal form
cross section
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Figure 1 (g):Arbitrary load with power form cross sec.
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Figure 1 (h):Arbitrary load with exponential form cross
section
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Figure 1 (i):Arbitrary load with cosinusoidal form cross
section
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Figure 1 (j):Ramped load with power form cross sec.
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Figure 1 (k):Ramped load with exponential form cross
section
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Figure 1 (l):Ramped load with cosinusoidal form cross
section
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