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 Numerical Investigation of Incompressible Forced Convection in a Channel with 
a Rectangular Prism 

 

Mert Özsaban*1, Erman Aslan2, Hasan Riza Güven3 

 

Abstract 

The aim of the present study is to investigate the effects of the rectangular prism on forced 
convection in a channel with the Lattice Boltzmann Method (LBM). In this context, numerical 
analysis of steady and unsteady incompressible flow and heat transfer has been done in a two-
dimensional straight parallel channel. Momentum and energy transport are modelled with 
LBM. This study is used as a single relaxation time rule with a uniform square lattice structure. 
Different Reynolds numbers (50 and 1000) and constant Prandtl number value (0.7) have been 
investigated. In this study Nusselt number has been calculated for channel flow with rectangular 
prism and it was compared with an empty channel. Streamlines and isotherms were presented 
for the above-mentioned cases. LBM results were validated by commercial CFD code with the 
same conditions. It is found from results that Nusselt number with a rectangular prism in a 
channel was increased and the flow goes to transient form at Re=1000. Also, LBM code results 
are similar accuracy with commercial CFD code. 

Keywords: Lattice Boltzmann Method, Nusselt number, incompressible forced convection, 
rectangular prism 

 

 

1. INTRODUCTION 

Lattice Boltzmann Method (LBM) can provide a 
faster solution than traditional CFD methods as 
Finite Difference Method and Finite Volume 
Method but it needs more memory [1]. In 
traditional CFD methods, nonlinear partial 
differential equations are converted to non-linear 
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algebraic equations and these equations are 
solved by iterations [2]. In the Lattice Boltzmann 
Method, the Navier-Stokes equation is 
approximately solved by colliding and advancing 
the fluid particles according to their lattice 
structure. LBM [2-4] relies upon a lattice structure 
that is orthogonal and equidistant. Staircase 
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boundary and “bounce-back” wall boundary 
conditions are widely used [5, 6]. 

Liu et al. [7] studied the bluff body especially on 
a circular cylinder in a channel flow. They have 
computed the turbulence energy at high Reynolds 
number and validate results from experimental 
data.  

Prosser and Smith [8] studied the various range of 
angle of attack on the rectangular bluff body. 
They present lift curved and modelled lift angle. 

Joubert et al. [9] studied the turbulent flow of 
various shapes of a rectangular prism in a wind 
tunnel and computational simulation in three-
dimensional. They used the model of simulation 
turbulence Spalart – Allmaras enhanced delayed 
detached eddy simulation (IDDES). They 
compared results with time-averaged 
experimental data from particle image 
velocimetry at high Reynolds number. 

Teixeira et al. [10] studied turbulent flow with 
force convection of various dimensions 
arrangements of the three-square prism in two-
dimensional. They have worked on Nusselt 
number velocity profiles and drag coefficient. 
They are modelled turbulence flow with RANS 
SST – k-ω and they solve time-averaged 
conservation equations with Finite Volumes 
Method. 

Cimarelli et al. [11] have worked on 1/5 
rectangular prism at 3000 Reynold number. They 
solved their problem with direct numerical 
simulation of the finite volume method. They 
presented drag and lift coefficient, mean velocity 
fields and turbulent kinetic energy. 

Kawamura et al. [12] studied heat transfer in the 
turbulent and transient flow of rectangular prism 
in a channel. They solved the problem by direct 
numerical simulation in three-dimensional. They 
presented in their study time-averaged vortex 
structure and the local Nusselt number for various 
Reynolds number. They compared the results of 
the Nusselt number and friction factor with 
experimental data. 

Rossinelli et al. [13] studied bluff bodies 
especially on a circular cylinder in two-
dimensional. They compared CPU and GPU 
accelerated solver results. They presented drag 
and lift coefficients, vorticity contour with 
different low and medium Reynolds numbers (40-
9500) from CPU and GPU solver results. 

The novelty of this study is investigating a 
rectangular prism in the channel flow with the 
Lattice Boltzmann Method (LBM) to the analysis 
of the velocity and heat transfer. The study 
presents 2D LBM code results for benchmark 
transport of thermal energy, incompressible 
steady-state and unsteady flows for two different 
Reynolds number (50, 1000) and constant Prandtl 
number (0.7). LBM results compared with a 
commercial CFD code [14]. Computational time 
and heat transfer accuracy compared with LBM 
code and commercial CFD code each other. 
Lattice Boltzmann Method examines the similar 
problem of forced convection in a rectangular 
obstacle channel [15-17]. Two studies [15,16] 
modelled just flow equation by LBM and one 
study [17] modelled flow equation by LBM and 
modelled energy equation by finite difference 
method. In this study momentum and energy 
equations computed by LBM.  

2. PROBLEM DEFINITION 

Figure 1 shows the sketch of the problem 
geometry. In Figure 1, the rectangular prism in the 
middle of the channel. At the north and south 
walls, boundary conditions are no-slip boundary 
conditions; x-velocity (u)=0 and y-velocity (v)=0 
for momentum equations. For the energy equation 
at the north and south walls is prescribed constant 
temperature (T)=0 and at the rectangular prism 
(RP) adiabatic wall is assumed. Inlet velocity 
boundary type is constant over the y-axis (u=u0), 
v=0 and T=0. At the outlet of the channel, constant 
static pressure is prescribed for momentum 
equation and zero-gradient boundary conditions 
for energy equations. In this study, low and 
medium Reynolds numbers (Re) have been 
studied. In the solution of medium Reynolds 
number exhibits longer vortex shedding than low 
Re. 
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Figure 1. Domain and boundary types of channel flow 
with the rectangular prism 

3. MATHEMATICAL AND NUMERICAL 
FORMULATION 

LBM formulations are generally used in literature 
by a single Bhatnagar - Gross - Krook (BGK) 
relaxation time approximation [18]. A BGK [19] 
version is adopted in this study. This version is 
appropriate for incompressible unsteady flows. In 
the present study shown in Figure 2, the two-
dimensional (2D) and nine velocity model of 
LBM (D2Q9) is used. In the present work, the 
single time relaxation and square lattice structures 
have been used. 

 

Figure 2. LBM D2Q9 lattice model 

Distribution functions in the collision step for 
momentum and streaming transport are shown 
below [2]; 

( , ) ( , ) ( , ) ( , )eqf x t t f x t f x t f x t         
          (1) 

( , ) ( , ) ( , ) ( , )eq

Tg x t t g x t g x t g x t         
       (2) 

In Equation 1 and Equation 2, t is the time and x


 
is the position vector. 

Distribution functions in the streaming step for 
momentum and streaming transport are provided 
below; 

( , ) ( , )f x c t t t f x t t      
                           (3) 

( , ) ( , )g x c t t t g x t t        
                             (4) 

The momentum and energy equations of collision 
frequencies are obtained from below respectively; 
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In Equation 5, ν is the dynamic viscosity and in 
Equation 6 α is the thermal diffusivity. 

The lattice sound speed is shown as below, 

3
s

c
c                                                                           (7) 

The lattice speed is defined as, 

x
c

t





                                                                        (8) 

In the present study uniform (square) lattice has 
been used and time step equal to mesh. Therefore 
lattice speed is equal to one and lattice sound 
speed results by below, 

1

3
sc                                                                         (9) 

Two-dimensional nine discrete velocities are 
shown below in the matrix form, 

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1
c c

   
     


 (10) 

The equilibrium distribution functions for 
momentum and energy transport are presented 
below; 

2

2 4 2

3 9 3
( )

2 2
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wall 
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In Equation 11, ρ is the density and u


 is the axial 
velocity vector. T is the temperature in Equation 
12. 

The weighting factors for all lattice directions are 
given as below, 
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The macroscopic fields that are given respectively 
by velocity ( u


), temperature (T), density (ρ), 

pressure (p); 
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The implementation of the boundary conditions in 
details is used from the literature [2, 3]. The 
bounce-back boundary condition is applied at 
walls. 

4. RESULTS AND DISCUSSION 

In the present study, all cases from both LBM and 
Fluent calculations are based on square-shape 
grids. LBM results obtained by a commercial 

CFD code Ansys-Fluent [14] are utilized. In 
Fluent calculations, the second-order upwind 
scheme was used to discrete the convective terms. 
In addition, the SIMPLEC scheme is used for 
steady-state computation to treat the velocity-
pressure coupling and the PISO algorithm [20] is 
used for unsteady computations in Fluent. In all 
Fluent calculations, the default values are used as 
0.7 value of momentum and 1.0 value of the 
pressure for under-relaxation factors, 10-6 is taken 
for energy, continuity, x-velocity and y-velocity 
as the convergence criteria. For unsteady fluent 
calculations, a second order Implicit time 
integration scheme is applied [14]. LBM and 
Fluent computations have the same time step size 
for steady-state flows. In the unsteady flows, 
same time step size and time step size which is 
provide the Courant number (Co) less than or 
equal to one are both used in the study. For the 
unsteady calculations, time-averaged and time-
invariant results are used. 

4.1. Preliminary Validation 

The presently developed LBM code is firstly 
validated for incompressible, steady-state, 
laminar flow. A comparison is conducted for this 
purpose with the analytical solution available in a 
fully-developed channel flow for the forced 
laminar convection. A simple channel geometry 
(without a rectangular prism) modelled with the 
constant inlet and wall temperature for Re = 50. 
Inlet value of temperature is “0” and the wall 
temperature is “1”. The length of the channel is 
defined to be sufficient to permit a fully 
developed thermal flow [21].  The Nusselt 
number predicted by LBM for the fully developed 
channel flow is compared with the theoretical 
value [21]. The agreement of both values 
confirms the accuracy of the present LBM code 
resulted in Table 1. 

Table 1. Fully developed channel flow Nusselt 
number at Re =50 

 LBM code Theory [21] 
Nusselt Number 7.54 7.54 
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4.2. Predictions for Different Reynolds 
Numbers 

Predictions are performed for Re = 50 and 1000. 
In these computations, based on the full channel 
domain, a steady-state flow solution at Re = 50 
(dx=dt=0.5, mesh=32800) is observed. For the 
higher number of Reynolds at Re = 1000, an 
unstable behaviour with vortex shedding is 
observed. In unsteady computations (LBM and 
Fluent), the time step size applied may be 
considered fairly small, resulting in a resolution 
of a period in at least 1461 time steps and in cell 
Courant numbers (Co) (Peyret, 1996) about 0.1 
(based on the mean inlet velocity) in terms of the 
finite volume method. Also Results of Co = 
0.1(dx=dt=0.125, mesh= 537600) and Co=0.8 
(dx=0.125, dt=1, mesh=537600) are compared 
with each other and LBM results. 

4.2.1. Velocity Fields 

Figure 3 shows LBM results of the streamlines of 
the unsteady/instantaneous and unsteady/time-
averaged flow at Re = 1000, and the streamlines 
of the steady-state at Re = 50, at the rectangular 
prism zone. 

a) 

 

b) 

c) 

 

Figure 3. Streamlines predicted by LBM: (a) steady-
state Re = 50, (b) unsteady/time-averaged Re=1000, 

and (c) unsteady/instantaneous Re=1000 

The instantaneous streamlines indicate the 
unsteady flow structure behind the RP due to 
vortex shedding at any time (Figure 3c). At Re = 
50, the time-averaged velocity field streamlines 
appear symmetrical and display a slight 
recirculation zone behind the prism (Figure 3a). 
The time-averaged unsteady flow at Re = 1000 
exhibits high recirculation zone size (Figure 3b). 

For the steady-state and unsteady time-averaged 
flow at Re = 50 and 1000, Table 2 present the 
Drag coefficients (CD) and Strouhal numbers (St) 
predicted by LBM and Fluent. Here, in 
determining the Strouhal number, the frequency 
related to the lifting force on the RP is considered. 

Table 3 compares the length of the recirculation 
zone (nondimensionalized by B) behind the 
rectangular prism, predicted for different 
Reynolds numbers by different methods. They are 
steady-state at Re = 50, unsteady time-average 
and unsteady instantaneous at Re = 1000. 
Recirculation zone length at Re = 1000 bigger 
than at Re = 50. LBM and Fluent computation 
results are similar to each other. 

Table 2. Drag coefficients (CD) and Strouhal numbers 
(St) predicted for Re = 50 and 1000 

 LBM Fluent % deviation 
CD (steady-state, 
Re = 50) 

13.77 14.64 5.94 % 

CD (unsteady, 
Re=1000) 

2.55 2.63 3.04 % 

St (unsteady,   Re 
= 1000) 

2.15 2.19 1.83 % 

 
Table 3. Recirculation zone length behind rectangular 

prism for different Re 
 

 Re=50 
(steady-state) 

Re=1000 
(unsteady/time-
average) 

LBM 0.276 B 1.519 B 
Fluent 0.257 B 1.594 B 
% derivation 7.39 % 4.70 % 
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LBM predicted isotherms for cases with and 
without rectangular prism are shown in Figure 4 
using different modelling approaches at Re = 50 
and 1000. The steady-state solutions shown in 
Figures. 4a, 4b and 4c. Figure 4d and 4e present 
unsteady solutions. In Figure 4, the 
nondimensional temperature has the value "0" at 
the inlet and the value "1" on the walls, where the 
step size between the isotherms is 0.05. 
 
The temperature field's unsteady/periodic pattern 
can be seen in Figure 4e. The unsteady solution's 
time-averaged results (Figure 4d) are different 
from the steady-state solution (Figure 4c) and 
mean a significant increase in heat transfer. 

 

a 

 

b 

c 

d 

e 

 
Figure 4. Temperature distribution predicted by 

LBM: (a) steady-state without prism Re = 50, (b) 
steady-state with prism Re = 50, (c) steady-state 

without prism Re = 1000 (d) unsteady/time-averaged 
with prism Re=1000, and (e) unsteady/instantaneous 

with prism Re=1000 

4.2.2. Heat Transfer 

Variations of the Nusselt number along the 
channel wall, predicted for Re = 50, are presented 
in Figure 5. One can observe that the rectangular 
prism causes an increase in the Nusselt number in 
a region near the prism (0.1 < x/L < 0.3). This is 
due to the increased near-wall velocities because 
of flow acceleration due to the blockage by the 
prism. The unsteady phenomena do not play any 

role here, as a steady-state is predicted for this 
Reynolds number. One can see that the present 
LBM predictions agree very well with the Fluent 
predictions (Figure 5). 

Variations of the Nusselt number along the 
channel wall predicted for Re = 1000 are 
presented in Figure 6. For this Reynolds number, 
the flow is unsteady/periodic. The Nusselt 
number increases around rectangular prism in the 
unsteady results, because of the increased skin 
friction by the blockage. 

 

Figure 5. Nusselt number along the channel wall at 
Re = 50. 

 

Figure 6. Nusselt number along the channel wall at 
Re = 1000. 

However, behind the rectangular prism, Steady-
state Nu forecasts undershoot the case's values 
without prism, since the near-wall flow (under 
steady-state assumptions) shows a region of 
deceleration behind prism. However, a higher 
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mean of Nusselt number value still forecasts. 
However, since the flow is unsteady/periodic, 
steady-state results artificially obtained that they 
do not have much physical importance (and can 
be quite inaccurate, as seen in the comparison). 
Figure 6 presents the variation of the Nusselt 
number for the instantaneous and the time-
averaged flow. The time-averaged variation of the 
Nusselt number shows a local peak at nearly the 
same location as the stationary solution, but 
slightly lower. This is followed in the downstream 
by a secondary local peak. The time-averaged 
Nusselt numbers, especially in the downstream 
region, are much higher than those of the case 
without prism and those of the stationary 
computation with RP. Thus, one can see that a 
rectangular prism can enhance heat transfer to 
channel walls, and this effect is primarily due to 
the unsteady-periodic vortex shedding. LBM and 
Fluent results are found to be in accordance again. 

Table 4 compares the CPU times required by 
LBM and Fluent, for computing a period of the 
case at Re = 1000. The cell Courant numbers are 
also indicated in the table. As already mentioned 
above, in the main computations, the time-step 
size has been chosen in such a way that the cell 
Courant number takes a value of about 0.1. Given 
the Reynolds number and the grid resolution, this 
value cannot arbitrarily be increased for LBM, 
due to stability considerations [2]. For better 
comparability, Fluent computations have also 
been carried out using the same time-step size, 
resulting in Co = 0.2. This comparison seems to 
be very much in favour of LBM (Table 4): the 
user time of LBM (304 s) is only 0.4% of the user 
time of Fluent (76,713 s). However, this picture is 
misleading, since the finite volume method does 
not have the same stability limitations as LBM, 
and Co can be larger for Fluent computations, 
without a principal loss of accuracy. Although the 
implicit backward time differencing applied in the 
Fluent computations does not have a theoretical 
stability limit, a time step corresponding to Co ≤ 
1 is generally assumed to be a safe upper limit for 
an accurate resolution of the physical unsteady 
phenomena. 

Thus, Fluent computations have also been 
performed for Co = 0.8, assuming this value of Co 

to be reasonably near the upper limit for an ideal 
accuracy in Fluent computations. As can be seen 
in Table 4, the user time of Fluent computations 
for Co = 0.8 is, of course, smaller than that of Co 
= 0.1. Comparing this computation (Fluent, Co = 
0.8) with LBM, one can see that the user time of 
LBM (304 s) is only 3.3% of the user time of 
Fluent (9,108 s). This comparison is also quite in 
favour of LBM. Nevertheless, this is still not a fair 
comparison: The present LBM formulation is 
based on a square-shaped lattice structure. For 
keeping ideal comparability for the accuracy, the 
finite volume grids were also constructed in a 
practically identical manner. However, this was 
not necessary for the Fluent computations: 
rectangular shaped cells, expanding grids, etc. 
could be used in Fluent computations, without a 
principal loss of accuracy, which would result in 
a smaller number of grid nodes and smaller CPU 
times. On the other hand, the LBM grid could also 
be designed to be non-equidistant by using, e.g., 
various interpolation techniques which also 
would result in a coarser grid and smaller CPU 
times for LBM. Such techniques for LBM are 
planned to be considered within the next 
development stage of the present LBM code. 
Thus, a more conclusive and fair comparison of 
the CPU requirements is planned to be performed 
within the framework of the planned future work. 

Table 4. CPU times (serial computing) 

 LBM 
Co=0.1 

Fluent 
Co=0.1 

Fluent 
Co=0.8 

Computation time (s) 304 76,713 9,108 

5. CONCLUSIONS 

The laminar forced convection is investigated 
computationally in a two-dimensional channel 
with an integrated rectangular prism by the 
Lattice Boltzmann Method. It is assumed that 
flow is incompressible and material properties are 
constant. The Lattice Boltzmann Method is used 
in a 2D channel with an integrated rectangular 
prism to computationally investigate the laminar 
forced convection. It is observed that the 
rectangular prism can enhance heat transfer, 
particularly for the high Reynolds numbers, 
where an unsteady/periodic flow vortex 
shedding appears to be the principle responsible 
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for this enhancement. Examinations with an 
entrenched commercial CFD code approve the 
developed LBM code. 
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