Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effects of Infill Geometry and Porosity Ratio on Mechanical Properties of PLA Structures Produced by Additive Manufacturing

Yıl 2023, Cilt: 9 Sayı: 2, 291 - 303, 31.08.2023

Öz

The fabrication of intricately formed parts, challenging with the traditional manufacturing approach, is facilitated by additive manufacturing (AM). Stacking the material layer by layer and using the 3D data from the model, parts are created using this technique. The design of parts with various porosities inside the same cell structure and industry sector-specific manufacture are both made possible by this technology. With varied infill geometries and porosity ratios, pieces made from PLA material with different mechanical properties were compared in this study. Parts were made for this purpose using fused deposition modeling (FDM) and various infill geometries (Octet, Gyroid, and Cross). The unit cell size for infill geometries was set at 5x5x5mm, and test samples with porosities of 50%, 30%, and 20% were created. Tensile, compression, and impact tests were conducted to examine the mechanical behavior of these parts, and the best unit cell structure was selected based on the assessed mechanical properties. In general, it was found that all fill geometries' mechanical qualities declined with increasing porosity ratio. The Octet infill geometry structure had the maximum tensile strength. However, the Cross infill geometry sample had the most significant deformation.

Destekleyen Kurum

Karabük University Coordinatorship of Scientific Research Projects

Proje Numarası

FDT-2020-2062

Teşekkür

The authors would like to thank Karabük University Coordinatorship of Scientific Research Projects for the financial support with project number FDT-2020-2062. This research is supported in part by Karabuk University

Kaynakça

  • [1] J. Wu, N. Aage, R. Westermann and O. Sigmund, "Infill Optimization for Additive Manufacturing-Approaching Bone-Like Porous Structures," IEEE Trans. Vis. Comput. Graph., vol. 24, no. 2, pp. 1127-1140, January 2017. doi:10.1109/ TVCG.2017.2655523
  • [2] L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-Or and B. Chen, "Build-to-last: Strength to weight 3D printed objects," ACM Trans. Graph., vol. 33, no. 4, pp. 1–10, July 2014. doi:10.1145/2601097.2601168
  • [3] W. Wang, T.Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen and X. Liu, "Cost-effective printing of 3D objects with skin-frame structures," ACM Trans. Graph., vol. 32, no. 6, pp. 1-10, November 2013. doi:10.1145/ 2508363.2508382
  • [4] V.S. Deshpande, N.A. Fleck and M.F. Ashby, "Effective properties of the octet-truss lattice material," J. Mech. Phys. Solids., vol. 49, no. 8, pp. 1747-1769, August 2001. doi:10.1016/S0022-5096(01)00010-2
  • [5] L. Baich, G. Manogharan and H. Marie, "Study of infill print design on production cost-time of 3D printed ABS parts," Int. J. Rapid Manuf., vol. 5, no:3-4, pp 308-319, February 2016. doi:10.1504/ijrapidm.2015.074809
  • [6] M. Fernandez-Vicente, W. Calle, S. Ferrandiz and A. Conejero, "Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing," 3D Print. Addit. Manuf., vol. 3, no. 3, pp. 183-1923, September 2016. doi:10.1089/3dp.2015.0036
  • [7] K.S. Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar and M. Ratteesh, "Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM," Mater. Today Proc., vol. 45, no. 2, pp. 2186-2191, May 2021. doi:10.1016/j.matpr.2020.10.078
  • [8] S. Ganeshkumar, S.D. Kumar, U. Magarajan, S. Rajkumar, B. Arulmurugan, S. Sharma, C. Li, R.A. Ilyas and M.F. Badran, "Investigation of Tensile Properties of Different Infill Pattern Structures of 3D-Printed PLA Polymers: Analysis and Validation Using Finite Element Analysis in ANSYS," Materials, vol. 15, no. 15, pp. 5142, June 2022. doi:10.3390/ma15155142
  • [9] C. Lubombo and M.A. Huneault, "Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts," Mater. Today Commun., vol. 17, pp. 214-228, December 2018. doi:10.1016/j.mtcomm.2018.09.017
  • [10] A. Tsouknidas, M. Pantazopoulos, I. Katsoulis, D. Fasnakis, S. Maropoulos and N. Michailidis, "Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling," Mater. Des., vol. 102, pp. 41-44, July 2016. doi:10.1016/j.matdes.2016.03.154
  • [11] T. Yao, J. Ye, Z. Deng, K. Zhang, Y. Ma and H. Ouyang, "Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses," Compos. Part B Eng., vol. 188, no. 107894, February 2020. doi:10.1016/j.compositesb.2020.107894
  • [12] "Essentium High Performance PLA Additive Manufacturing Filament," MatWeb, October 2022. [Online]. Available: https://www.matweb.com/index.aspx.
  • [13] "Infill Pattern Comparison". Reddit, June 2020. [Online]. Available: https://www.reddit.com/r/3Dprinting/comments/ pdgbv0/infill_pattern_comparison/.
  • [14] R. Yeşiloğlu, "Eklemeli İmalat İle Üretilen Farklı Dolgu Geometrisi Ve Yoğunluğa Sahip Pla Esaslı Yapıların Mekanik Davranışlarının Deneysel Olarak Araştırılması," Y Lisans Tezi, Lisansüstü Eğitim Enstitüsü, Karabük Üniversitesi, 2022.
  • [15] Z. P. Sun, Y. B. Guo and V. P. W. Shim, "Deformation and energy absorption characteristics of additively-manufactured polymeric lattice structures - Effects of cell topology and material anisotropy," Thin-Walled Struct., vol. 169, no. 108420, December 2021. doi:10.1016/j.tws.2021.108420
  • [16] A. Kumar, A. Kumar, A. Pandey, S. Sahu, N. Kumar and R. P. Singh, "Analysing the compressive behaviour of different PLA scaffolds fabricated through FFF process," Advances in Materials and Processing Technologies, vol. 9, no. 2, pp. 402-415, Jul 2022. doi:10.1080/2374068X.2022.2093005
  • [17] M. Alizadeh-Osgouei, Y. Li, A. Vahid, A. Ataee and C. Wen, "High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications," Smart Mater. Med., vol. 2, pp. 15-25, 2021. doi:10.1016/j.smaim.2020.10.003
  • [18] H. Dou, W. Ye, D. Zhang, Y. Cheng and Y. Tian, "Compression performance with different build orientation of fused filament fabrication polylactic acid, acrylonitrile butadiene styrene, and polyether ether ketone," Journal of Materials Engineering and Performance, vol. 31, pp. 1925–1933, 2022. doi:10.1007/s11665-021-06363-2
  • [19] M. Rismalia, S. C. Hidajat, I. G. R. Permana, B. Hadisujoto, M. Muslimin and F. Triawan, "Infill pattern and density effects on the tensile properties of 3D printed PLA material" J. Phys.: Conf. Ser., vol. 1402, no. 4, 2019. doi:10.1088/1742-6596/1402/4/044041
  • [20] M. Günay, S. Gündüz, H. Yılmaz, N. Yaşar ve R. Kaçar, "PLA esasli numunelerde çekme dayanimi için 3D baski işlem parametrelerinin optimizasyonu," Politeknik Dergisi, cilt 23, sayı 1, ss. 73-79, 2020. doi:10.2339/ politeknik.422795
  • [21] S. Korga, M. Barszcz and Ł. Zgryza, "The effect of the 3D printout filling parameter on the impact strength of elements made with the FDM method," IOP Conf. Series: Materials Science and Engineering, vol. 710, 2019. doi:10.1088/1757-899X/710/1/012027
  • [22] M.Q. Tanveer, A. Haleem and M. Suhaib, "Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: An experimental investigation." SN Applied Sciences, vol. 1, no. 1701, 2019. doi:10.1007/s42452-019-1744-1

Eklemeli İmalat ile Üretilen PLA Yapılarda Dolgu Geometrisi ve Gözenek Oranının Mekanik Özelliklere Etkisi

Yıl 2023, Cilt: 9 Sayı: 2, 291 - 303, 31.08.2023

Öz

Eklemeli imalat (Eİ) yöntemi, geleneksel üretim teknikleri ile imalatı zor olan kompleks geometrili parçaların kolay bir şekilde üretilmesini sağlayan bir imalat metodudur. Bu imalat yönteminde, üretilecek olan modelin 3D verileri yardımıyla malzeme katmanlar halinde yığılarak parçalar üretilmektedir. Eriyik yığma modelleme (EYM) yöntemi termoplastik malzemelerden parça üretiminde sıklıkla kullanılan bir Eİ yöntemidir. Bu çalışmada, PLA malzemeden üretilen parçalarda farklı dolgu geometrisi ve gözenek oranının bu parçaların mekanik özelliklerine etkisi deneysel olarak incelenmiştir. Parçaların mekanik davranışlarını araştırmak amacıyla çekme, basma ve darbe deneyleri ilgili standartlara göre yapılmış ve karşılaştırılan mekanik özellikler açısından en uygun birim hücre yapısı belirlenmiştir. Bu amaçla, farklı dolgu geometrilerine (Octet, Gyroid ve Cross) ve gözenek oranlarına (%50, %30 ve %20) sahip numuneler parçalar numuneler her bir deney standardına uygun boyutlarda modellenmiş ve EYM yöntemiyle üretilmiştir. Genel olarak, tüm dolgu geometrilerinde gözeneklilik oranının artmasıyla mekanik özelliklerin kötüleştiği görülmüştür. Octet dolgu geometrili yapıda en yüksek çekme dayanımı elde edilirken, Cross dolgu geometrili yapıda en fazla şekil değişimi görülmüştür.

Proje Numarası

FDT-2020-2062

Kaynakça

  • [1] J. Wu, N. Aage, R. Westermann and O. Sigmund, "Infill Optimization for Additive Manufacturing-Approaching Bone-Like Porous Structures," IEEE Trans. Vis. Comput. Graph., vol. 24, no. 2, pp. 1127-1140, January 2017. doi:10.1109/ TVCG.2017.2655523
  • [2] L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-Or and B. Chen, "Build-to-last: Strength to weight 3D printed objects," ACM Trans. Graph., vol. 33, no. 4, pp. 1–10, July 2014. doi:10.1145/2601097.2601168
  • [3] W. Wang, T.Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen and X. Liu, "Cost-effective printing of 3D objects with skin-frame structures," ACM Trans. Graph., vol. 32, no. 6, pp. 1-10, November 2013. doi:10.1145/ 2508363.2508382
  • [4] V.S. Deshpande, N.A. Fleck and M.F. Ashby, "Effective properties of the octet-truss lattice material," J. Mech. Phys. Solids., vol. 49, no. 8, pp. 1747-1769, August 2001. doi:10.1016/S0022-5096(01)00010-2
  • [5] L. Baich, G. Manogharan and H. Marie, "Study of infill print design on production cost-time of 3D printed ABS parts," Int. J. Rapid Manuf., vol. 5, no:3-4, pp 308-319, February 2016. doi:10.1504/ijrapidm.2015.074809
  • [6] M. Fernandez-Vicente, W. Calle, S. Ferrandiz and A. Conejero, "Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing," 3D Print. Addit. Manuf., vol. 3, no. 3, pp. 183-1923, September 2016. doi:10.1089/3dp.2015.0036
  • [7] K.S. Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar and M. Ratteesh, "Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM," Mater. Today Proc., vol. 45, no. 2, pp. 2186-2191, May 2021. doi:10.1016/j.matpr.2020.10.078
  • [8] S. Ganeshkumar, S.D. Kumar, U. Magarajan, S. Rajkumar, B. Arulmurugan, S. Sharma, C. Li, R.A. Ilyas and M.F. Badran, "Investigation of Tensile Properties of Different Infill Pattern Structures of 3D-Printed PLA Polymers: Analysis and Validation Using Finite Element Analysis in ANSYS," Materials, vol. 15, no. 15, pp. 5142, June 2022. doi:10.3390/ma15155142
  • [9] C. Lubombo and M.A. Huneault, "Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts," Mater. Today Commun., vol. 17, pp. 214-228, December 2018. doi:10.1016/j.mtcomm.2018.09.017
  • [10] A. Tsouknidas, M. Pantazopoulos, I. Katsoulis, D. Fasnakis, S. Maropoulos and N. Michailidis, "Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling," Mater. Des., vol. 102, pp. 41-44, July 2016. doi:10.1016/j.matdes.2016.03.154
  • [11] T. Yao, J. Ye, Z. Deng, K. Zhang, Y. Ma and H. Ouyang, "Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses," Compos. Part B Eng., vol. 188, no. 107894, February 2020. doi:10.1016/j.compositesb.2020.107894
  • [12] "Essentium High Performance PLA Additive Manufacturing Filament," MatWeb, October 2022. [Online]. Available: https://www.matweb.com/index.aspx.
  • [13] "Infill Pattern Comparison". Reddit, June 2020. [Online]. Available: https://www.reddit.com/r/3Dprinting/comments/ pdgbv0/infill_pattern_comparison/.
  • [14] R. Yeşiloğlu, "Eklemeli İmalat İle Üretilen Farklı Dolgu Geometrisi Ve Yoğunluğa Sahip Pla Esaslı Yapıların Mekanik Davranışlarının Deneysel Olarak Araştırılması," Y Lisans Tezi, Lisansüstü Eğitim Enstitüsü, Karabük Üniversitesi, 2022.
  • [15] Z. P. Sun, Y. B. Guo and V. P. W. Shim, "Deformation and energy absorption characteristics of additively-manufactured polymeric lattice structures - Effects of cell topology and material anisotropy," Thin-Walled Struct., vol. 169, no. 108420, December 2021. doi:10.1016/j.tws.2021.108420
  • [16] A. Kumar, A. Kumar, A. Pandey, S. Sahu, N. Kumar and R. P. Singh, "Analysing the compressive behaviour of different PLA scaffolds fabricated through FFF process," Advances in Materials and Processing Technologies, vol. 9, no. 2, pp. 402-415, Jul 2022. doi:10.1080/2374068X.2022.2093005
  • [17] M. Alizadeh-Osgouei, Y. Li, A. Vahid, A. Ataee and C. Wen, "High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications," Smart Mater. Med., vol. 2, pp. 15-25, 2021. doi:10.1016/j.smaim.2020.10.003
  • [18] H. Dou, W. Ye, D. Zhang, Y. Cheng and Y. Tian, "Compression performance with different build orientation of fused filament fabrication polylactic acid, acrylonitrile butadiene styrene, and polyether ether ketone," Journal of Materials Engineering and Performance, vol. 31, pp. 1925–1933, 2022. doi:10.1007/s11665-021-06363-2
  • [19] M. Rismalia, S. C. Hidajat, I. G. R. Permana, B. Hadisujoto, M. Muslimin and F. Triawan, "Infill pattern and density effects on the tensile properties of 3D printed PLA material" J. Phys.: Conf. Ser., vol. 1402, no. 4, 2019. doi:10.1088/1742-6596/1402/4/044041
  • [20] M. Günay, S. Gündüz, H. Yılmaz, N. Yaşar ve R. Kaçar, "PLA esasli numunelerde çekme dayanimi için 3D baski işlem parametrelerinin optimizasyonu," Politeknik Dergisi, cilt 23, sayı 1, ss. 73-79, 2020. doi:10.2339/ politeknik.422795
  • [21] S. Korga, M. Barszcz and Ł. Zgryza, "The effect of the 3D printout filling parameter on the impact strength of elements made with the FDM method," IOP Conf. Series: Materials Science and Engineering, vol. 710, 2019. doi:10.1088/1757-899X/710/1/012027
  • [22] M.Q. Tanveer, A. Haleem and M. Suhaib, "Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: An experimental investigation." SN Applied Sciences, vol. 1, no. 1701, 2019. doi:10.1007/s42452-019-1744-1
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Rukiye Yeşiloğlu 0000-0003-3074-6295

Ramazan Özmen 0000-0002-6020-8538

Mustafa Günay 0000-0002-1281-1359

Proje Numarası FDT-2020-2062
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 24 Ocak 2023
Kabul Tarihi 8 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE R. Yeşiloğlu, R. Özmen, ve M. Günay, “The Effects of Infill Geometry and Porosity Ratio on Mechanical Properties of PLA Structures Produced by Additive Manufacturing”, GMBD, c. 9, sy. 2, ss. 291–303, 2023.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg